首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The alpha 6 beta 4 integrin is structurally distinct from all the other known integrins because the cytoplasmic domain of beta 4 is unusually large and contains four type III fibronectin-like modules toward its C-terminus. To examine the function of the beta 4 cytoplasmic tail, we have expressed full-length and truncated human beta 4 cDNAs in rat bladder epithelial 804G cells, which form hemidesmosome-like adhesions in vitro. The cDNA encoded wild-type beta 4 subunit associated with endogenous alpha 6 and was recruited at the cell surface within hemidesmosome-like adhesions. A recombinant form of beta 4, lacking almost the entire cytoplasmic domain associated with alpha 6, reached the cell surface but remained diffusely distributed. A beta 4 molecule lacking almost the entire extracellular portion did not associate with alpha 6 but was correctly targeted to the hemidesmosome-like adhesions. Thus, the cytoplasmic portion of beta 4 contains sequences that are required and may be sufficient for the assembly of the alpha 6 beta 4 integrin into hemidesmosomes. To localize these sequences we examined the properties of additional mutant forms of beta 4. A truncated beta 4 subunit, lacking the most C-terminal pair of type III fibronectin homology domains, was incorporated into hemidesmosome-like adhesions, but another recombinant beta 4 molecule, lacking both pairs of type III fibronectin repeats, was not. Finally a recombinant beta 4 molecule, which was created by adjoining the region of the cytoplasmic domain including all type III repeats to the transmembrane segment, was efficiently recruited in hemidesmosome-like adhesions. Taken together these results suggest that the assembly of the alpha 6 beta 4 integrin into hemidesmosomes is mediated by a 303-amino acid region of beta 4 tail that comprises the first pair of type III fibronectin repeats and the segment between the second and third repeats. These data imply a function of a specific segment of the beta 4 cytoplasmic domain in interaction with cytoskeletal components of hemidesmosomes.  相似文献   

2.
Plectin is a widely expressed cytoskeletal linker. Here we report the crystal structure of the actin binding domain of plectin and show that this region is sufficient for interaction with F-actin or the cytoplasmic region of integrin alpha6beta4. The structure is formed by two calponin homology domains arranged in a closed conformation. We show that binding to F-actin induces a conformational change in plectin that is inhibited by an engineered interdomain disulfide bridge. A two-step induced fit mechanism involving binding and subsequent domain rearrangement is proposed. In contrast, interaction with integrin alpha6beta4 occurs in a closed conformation. Competitive binding of plectin to F-actin and integrin alpha6beta4 may rely on the observed alternative binding mechanisms and involve both allosteric and steric factors.  相似文献   

3.
Integrin cytoplasmic domains mediate inside-out signal transduction   总被引:35,自引:10,他引:25       下载免费PDF全文
《The Journal of cell biology》1994,124(6):1047-1059
We analyzed the binding of fibronectin to integrin alpha 5 beta 1 in various cells; in some cells fibronectin bound with low affinity (e.g., K562 cells) whereas in others (e.g., CHO), it bound with high affinity (Kd approximately 100 nM) in an energy-dependent manner. We constructed chimeras of the extracellular and transmembrane domains of alpha IIb beta 3 joined to the cytoplasmic domains of alpha 5 beta 1. The affinity state of these chimeras was assessed by binding of fibrinogen or the monoclonal antibody, PAC1. The cytoplasmic domains of alpha 5 beta 1 conferred an energy-dependent high affinity state on alpha IIb beta 3 in CHO but not K562 cells. Three additional alpha cytoplasmic domains (alpha 2, alpha 6A, alpha 6B) conferred PAC1 binding in CHO cells, while three others (alpha M, alpha L, alpha v) did not. In the high affinity alpha chimeras, cotransfection with a truncated (beta 3 delta 724) or mutated (beta 3(S752-->P)) beta 3 subunit abolished high affinity binding. Thus, both cytoplasmic domains are required for energy-dependent, cell type-specific affinity modulation. In addition, mutations that disrupted a highly conserved alpha subunit GFFKR motif, resulted in high affinity binding of ligands to alpha IIb beta 3. In contrast to the chimeras, the high affinity state of these mutants was independent of cellular metabolism, cell type, and the bulk of the beta subunit cytoplasmic domain. Thus, integrin cytoplasmic domains mediate inside-out signaling. Furthermore, the highly conserved GFFKR motif of the alpha subunit cytoplasmic domain maintains the default low affinity state.  相似文献   

4.
The membrane-distal headpiece of integrins has evolved to specifically bind large extracellular protein ligands, but the molecular architecture of the resulting complexes has not been determined. We used molecular electron microscopy to determine the three-dimensional structure of the ligand-binding headpiece of integrin alpha5beta1 complexed with fragments of its physiological ligand fibronectin. The density map for the unliganded alpha5beta1 headpiece shows a 'closed' conformation similar to that seen in the alphaVbeta3 crystal structure. By contrast, binding to fibronectin induces an 'open' conformation with a dramatic, approximately 80 degrees change in the angle of the hybrid domain of the beta subunit relative to its I-like domain. The fibronectin fragment binds to the interface between the beta-propeller and I-like domains in the integrin headpiece through the RGD-containing module 10, but direct contact of the synergy-region-containing module 9 to integrin is not evident. This finding is corroborated by kinetic analysis of real-time binding data, which shows that the synergy site greatly enhances k(on) but has little effect on the stability or k(off) of the complex.  相似文献   

5.
The integrin alpha 6 beta 4 is a major component of hemidesmosomes, in which it is linked to intermediate filaments. Its presence in these structures is dependent on the beta 4 cytoplasmic domain but it is not known whether beta 4 interacts directly with keratin filaments or by interaction with other proteins. In this study, we have investigated the interaction of GST-cyto beta 4A fusion proteins with cellular proteins and demonstrate that a fragment of beta 4A, consisting of the two pairs of fibronectin type III repeats, separated by the connecting segment, forms a specific complex containing a 500-kDa protein that comigrates with HD1, a hemidesmosomal plaque protein. A similar protein was also bound by a glutathione S-transferase fusion protein containing the cytoplasmic domain of a variant beta 4 subunit (beta 4B), in which a stretch of 53 amino acids is inserted in the connecting segment. Subsequent immunoblot analysis revealed that the 500-kDa protein is in fact HD1. In COS-7 cells, which do not express alpha 6 beta 4 or the hemidesmosomal components BP230 and BP180, HD1 is associated with the cytoskeleton, but after transfecting the cells with cDNAs for human alpha 6 and beta 4, it was, instead, colocalized with alpha 6 beta 4 at the basal side of the cells. The organization of the vimentin, keratin, actin, and tubulin cytoskeletal networks was not affected by the expression of alpha 6 beta 4 in COS-7 cells. The localization of HD1 at the basal side of the cells depends on the same region of beta 4 that forms a complex containing HD1 in vitro, since the expression of alpha 6 with a mutant beta 4 subunit that lacks the four fibronectin type III repeats and the connecting segment did not alter the distribution of HD1. The results indicate that for association of alpha 6 beta 4 with HD1, the cytoplasmic domain of beta 4 is essential. We suggest that this association may be crucial for hemidesmosome assembly.  相似文献   

6.
The cytoplasmic domain of beta(3) integrin contains tyrosines at positions 747 and 759 in domains that have been implicated in regulation of alpha(v)beta(3) function and that serve as potential substrates for Src family kinases. The phosphorylation level of beta(3) integrin was modulated using a temperature-sensitive v-Src kinase. Increased beta(3) phosphorylation abolished alpha(v)beta(3)- but not alpha(5)beta(1)-mediated adhesion to fibronectin. alpha(v)beta(3)-Mediated cell adhesion was restored by the expression of beta(3) containing Y747F or Y759F mutations but not by wild type beta(3) integrin. Thus, phosphorylation of the cytoplasmic domain of beta(3) is a negative regulator of alpha(v)beta(3)-fibronectin binding strength.  相似文献   

7.
Integrin beta subunits contain a highly conserved I-like domain that is known to be important for ligand binding. Unlike integrin I domains, the I-like domain requires integrin alpha and beta subunit association for optimal folding. Pactolus is a novel gene product that is highly homologous to integrin beta subunits but lacks associating alpha subunits [Chen, Y., Garrison, S., Weis, J. J., and Weis, J. H. (1998) J. Biol. Chem. 273, 8711-8718] and a approximately 30 amino acid segment corresponding to the specificity-determining loop (SDL) in the I-like domain. We find that the SDL is responsible for the defects in integrin beta subunit expression and folding in the absence of alpha subunits. When transfected in the absence of alpha subunits into cells, extracellular domains of mutant beta subunits lacking SDL, but not wild-type beta subunits, were well secreted and contained immunoreactive I-like domains. The purified recombinant soluble beta1 subunit with the SDL deletion showed an elongated shape in electron microscopy, consistent with its structure in alphabeta complexes. The SDL segment is not required for formation of alpha5beta1, alpha4beta1, alphaVbeta3, and alpha6beta4 heterodimers, but is essential for fomation of alpha6beta1, alphaVbeta1, and alphaLbeta2 heterodimers, suggesting that usage of subunit interface residues is variable among integrins. The beta1 SDL is required for ligand binding and for the formation of the epitope for the alpha5 monoclonal antibody 16 that maps to loop segments connecting blades 2 and 3 of beta-propeller domain of alpha5, but is not essential for nearby beta-propeller epitopes.  相似文献   

8.
Translocation of conventional protein kinases C (PKCs) to the plasma membrane leads to their specific association with transmembrane-4 superfamily (TM4SF; tetraspanin) proteins (CD9, CD53, CD81, CD82, and CD151), as demonstrated by reciprocal co-immunoprecipitation and covalent cross-linking experiments. Although formation and maintenance of TM4SF-PKC complexes are not dependent on integrins, TM4SF proteins can act as linker molecules, recruiting PKC into proximity with specific integrins. Previous studies showed that the extracellular large loop of TM4SF proteins determines integrin associations. In contrast, specificity for PKC association probably resides within cytoplasmic tails or the first two transmembrane domains of TM4SF proteins, as seen from studies with chimeric CD9 molecules. Consistent with a TM4SF linker function, only those integrins (alpha(3)beta(1), alpha(6)beta(1), and a chimeric "X3TC5" alpha(3) mutant) that associated strongly with tetraspanins were found in association with PKC. We propose that PKC-TM4SF-integrin structures represent a novel type of signaling complex. The simultaneous binding of TM4SF proteins to the extracellular domains of the integrin alpha(3) subunit and to intracellular PKC helps to explain why the integrin alpha3 extracellular domain is needed for both intracellular PKC recruitment and PKC-dependent phosphorylation of the alpha(3) integrin cytoplasmic tail.  相似文献   

9.
The selective emigration of blood born leukocytes into tissues is mediated, in part by interactions of Ig-like cell adhesion molecules (IgCAMs) expressed on vascular endothelium and their cognate ligands, the leukocyte integrins. Within mucosal lymphoid tissues and gastrointestinal sites the mucosal vascular addressin. MAdCAM-1 is the predominant IgCAM, mediating specific lymphocyte homing via interactions with its ligand on lymphocytes, the integrin alpha4beta7. Previous studies have shown that an essential binding motif resides in the first Ig domain of all IgCAMs, containing an acidic residue (D or E) preceded by an aliphatic residue (L or I) that resides in strand C or the CD loop. However, domain swap experiments with MAdCAM-1 and VCAM-1 have shown a requirement for both Ig domains 1 and 2 for efficient integrin binding. We describe the use of chimeric MAdCAM-1/VCAM-1 receptors and point mutations in MAdCAM-1 to define other sites that are required for binding to the integrin alpha4beta7. We find that, in addition to critical CD loop residues, other regions in both domain one and two contribute to MAdCAM-1/alpha4beta7 interactions, including a buried arginine residue in the F strand of domain one and several acidic residues in a highly extended DE ribbon in domain 2. These mutations, when placed in the recently solved crystal structure of human MAdCAM-1 give insight into the integrin binding preference of this unique receptor.  相似文献   

10.
We describe the expression of the beta 1 subunit of avian integrin in rodent cells with the purpose of examining the structure-function relationships of various domains within this subunit. The exogenous subunit is efficiently and stably expressed in 3T3 cells, and it forms hybrid heterodimers with endogenous murine alpha subunits, including alpha 3 and alpha 5. These heterodimers are exported to the cell surface and localize in focal contacts where both extracellular matrix and cytoskeleton associate with the plasma membrane. Hybrid heterodimers consisting of exogenous beta 1 and endogenous alpha subunits bind effectively and specifically to columns of cell-binding fragments of fibronectin. The exogenous avian beta 1 subunit appears to function as well as its endogenous murine equivalent, consistent with the high degree of conservation noted previously for integrins. In contrast, expression of a mutant form of avian integrin beta 1 subunit lacking the cytoplasmic domain produces hybrid heterodimers which, while efficiently exported to the cell surface and still capable of binding fibronectin, do not localize efficiently in focal contacts. This further implicates the cytoplasmic domain of the beta 1 subunit in interactions required for cytoskeletal organization.  相似文献   

11.
We previously demonstrated that beta(4) integrin subunit overexpression increases in vitro invasiveness of NIH3T3 cells that have been transformed by ErbB-2 oncogene. We used this model to identify domains within the large beta(4) cytoplasmic domain that are involved in the interaction of alpha(6)beta(4) with ErbB-2, invasion, and phosphatidylinositol 3-kinase (PI3K) activation. For this purpose, we expressed deletion mutants of beta(4) that lacked either all or portions of the beta(4) cytoplasmic domain in NIH3T3/ErbB-2 cells. We also used an ecto-domain mutant in which most of the extracellular domain of beta(4) was replaced with a c-Myc tag. These transfectants were examined for their ability to invade Matrigel and their ability to activate PI3K, as well as for the ability of alpha(6)beta(4) to co-immunoprecipitate with ErbB-2. The results obtained revealed that a region of the beta(4) cytoplasmic domain between amino acids 854 and 1183 is critical for the ability of alpha(6)beta(4) integrin to increase invasion. Interestingly, the extracellular domain of beta(4) is not necessary for alpha(6)beta(4) to stimulate invasion. The association of alpha(6)beta(4) with ErbB-2 is dependent upon the beta(4) cytoplasmic domain and can occur in the absence of alpha(6)beta(4) heterodimerization. Finally, we observed strong activation of PI3K with beta(4) wild type and with those beta(4) deletion mutants that were able to stimulate invasion upon the expression in NIH3T3/ErbB-2 cells. In conclusion, our results establish that there is cooperation between alpha(6)beta(4) and ErbB-2 in promoting PI3K-dependent invasion and implicate a specific region of the beta(4) cytoplasmic domain (amino acids 854-1183) in this event.  相似文献   

12.
Vinogradova O  Velyvis A  Velyviene A  Hu B  Haas T  Plow E  Qin J 《Cell》2002,110(5):587-597
Activation of the ligand binding function of integrin heterodimers requires transmission of an "inside-out" signal from their small intracellular segments to their large extracellular domains. The structure of the cytoplasmic domain of a prototypic integrin alpha(IIb)beta(3) has been solved by NMR and reveals multiple hydrophobic and electrostatic contacts within the membrane-proximal helices of its alpha and the beta cytoplasmic tails. The interface interactions are disrupted by point mutations or the cytoskeletal protein talin that are known to activate the receptor. These results provide a structural mechanism by which a handshake between the alpha and the beta cytoplasmic tails restrains the integrin in a resting state and unclasping of this interaction triggers the inside-out conformational signal that leads to receptor activation.  相似文献   

13.
The adhesiveness of integrins is regulated through a process termed "inside-out" signaling. To understand the molecular mechanism of integrin inside-out signaling, we generated K562 stable cell lines that expressed LFA-1 (alpha(L)beta(2)) or Mac-1 (alpha(M)beta(2)) with mutations in the cytoplasmic domain. Complete truncation of the beta(2) cytoplasmic domain, but not a truncation that retained the membrane proximal eight residues, resulted in constitutive activation of alpha(L)beta(2) and alpha(M)beta(2), demonstrating the importance of this membrane proximal region in the regulation of integrin adhesive function. Furthermore, replacement of the alpha(L) and beta(2) cytoplasmic domains with acidic and basic peptides that form an alpha-helical coiled coil caused inactivation of alpha(L)beta(2). Association of these artificial cytoplasmic domains was directly demonstrated. By contrast, replacement of the alpha(L) and beta(2) cytoplasmic domains with two basic peptides that do not form an alpha-helical coiled coil activated alpha(L)beta(2). Induction of ligand binding by the activating cytoplasmic domain mutations correlated with the induction of activation epitopes in the extracellular domain. Our data demonstrate that cytoplasmic, membrane proximal association between integrin alpha and beta subunits, constrains an integrin in the inactive conformation.  相似文献   

14.
Laminin is the first extracellular matrix protein expressed in the developing mouse embryo. It is known to influence morphogenesis and affect cell migration and polarization. Several laminin receptors are included in the integrin family of extracellular matrix receptors. Ligand binding by integrin heterodimers results in signal transduction events controlling cell motility. We report that the major laminin receptor on murine embryonic stem (ES) cells is the integrin heterodimer alpha 6 beta 1, an important receptor for laminin in neurons, lymphocytes, macrophages, fibroblasts, platelets and other cell types. However, the cytoplasmic domain of the ES cell alpha 6 (alpha 6 B) differs totally from the reported cytoplasmic domain amino acid sequence of alpha 6 (alpha 6 A). Comparisons of alpha 6 cDNAs from ES cells and other cells suggest that the alpha 6 A and alpha 6 B cytoplasmic domains derive from alternative mRNA splicing. Anti-peptide antibodies to alpha 6 A are unreactive with ES cells, but react with mouse melanoma cells and embryonic fibroblasts. When ES cells are cultured under conditions that permit their differentiation, they become positive for alpha 6 A, concurrent with the morphologic appearance of differentiated cell types. Thus, expression of the alpha 6 B beta 1 laminin receptor may be favored in undifferentiated, totipotent cells, while the expression of alpha 6 A beta 1 receptor occurs in committed lineages. While the functions of integrin alpha chain cytoplasmic domains are not understood, it is possible that they contribute to transferring signals to the cell interior, e.g., by delivering cytoskeleton organizing signals in response to integrin engagement with extracellular matrix ligands. It is therefore reasonable to propose that the cellular responses to laminin may vary, according to what alpha subunit isoform (alpha 6 A or alpha 6 B) is expressed as part of the alpha 6 beta 1 laminin receptor. The switch from alpha 6 B to alpha 6 A, if confirmed in early embryos, could then be of striking potential relevance to the developmental role of laminin.  相似文献   

15.
The alpha 6 beta 4 integrin is a receptor involved in the interaction of epithelial cells with basement membranes. This integrin is unique among the known integrins in that its beta 4 subunit has a large cytoplasmic domain. The function of this cytoplasmic domain is not known. In this paper we show that the beta 4 subunit undergoes proteolytic processing in cultured cells and provide evidence that this also happens in tissues. Immunoprecipitation experiments indicated that the cytoplasmic domain of beta 4 is susceptible to a calcium-dependent protease present in cellular extracts. In vitro assays with purified calpain showed that this enzyme can cleave beta 4 at two distinct sites in the cytoplasmic domain, generating truncated molecules of 165 and 130 kD. Immunoblotting experiments performed on cultured epithelial cells using an antibody to a peptide modeled after the COOH-terminus of the beta 4 subunit showed 70-kD fragments and several fragments of molecular masses between 185 and 115 kD. Similar fragments were detected in CHO cells transfected with the full-length beta 4 cDNA, but not in control transfected cells or in cells transfected with a mutant cDNA lacking the epitope of the cytoplasmic peptide antibody. The sizes of the fragments indicated that both the intracellular and extracellular domains of beta 4 are proteolytically processed. To examine the processing of the beta 4 subunit in epithelial tissues in vivo, human skin frozen sections were stained with antibodies to the ectodomain or the cytoplasmic domain of beta 4. The distinct staining patterns obtained with the two types of antibodies provided evidence that beta 4 is proteolytically processed in vivo in skin. Analogous experiments performed on sections of the cornea suggested that beta 4 is not proteolytically processed at a detectable level in this tissue. Thus, cleavage of the beta 4 subunit occurs in a tissue-specific fashion. These results suggest a potential mechanism of modulating the activities of the alpha 6 beta 4 integrin.  相似文献   

16.
Cyclic nucleotide phosphodiesterases (PDEs) catalyze the degradation of the cyclic nucleotides cAMP and cGMP, which are important second messengers. Five of the 11 mammalian PDE families have tandem GAF domains at their N termini. PDE10A may be the only mammalian PDE for which cAMP is the GAF domain ligand, and it may be allosterically stimulated by cAMP. PDE10A is highly expressed in striatal medium spiny neurons. Here we report the crystal structure of the C-terminal GAF domain (GAF-B) of human PDE10A complexed with cAMP at 2.1-angstroms resolution. The conformation of the PDE10A GAF-B domain monomer closely resembles those of the GAF domains of PDE2A and the cyanobacterium Anabaena cyaB2 adenylyl cyclase, except for the helical bundle consisting of alpha1, alpha2, and alpha5. The PDE10A GAF-B domain forms a dimer in the crystal and in solution. The dimerization is mainly mediated by hydrophobic interactions between the helical bundles in a parallel arrangement, with a large buried surface area. In the PDE10A GAF-B domain, cAMP tightly binds to a cNMP-binding pocket. The residues in the alpha3 and alpha4 helices, the beta6 strand, the loop between 3(10) and alpha4, and the loop between alpha4 and beta5 are involved in the recognition of the phosphate and ribose moieties. This recognition mode is similar to those of the GAF domains of PDE2A and cyaB2. In contrast, the adenine base is specifically recognized by the PDE10A GAF-B domain in a unique manner, through residues in the beta1 and beta2 strands.  相似文献   

17.
The membrane proximal regions of integrin alpha and beta subunits are highly conserved in evolution. In particular, all integrin alpha subunits share the KXGFFKR sequence at the beginning of their cytoplasmic domains. Previous work has shown that this domain is important in integrin receptor assembly. Using chimeric integrin alpha and beta subunits, we show that the native cytoplasmic domains of both subunits must be present for efficient assembly. Most strikingly, chimeric alpha 1 and beta 1 subunits with reciprocally swapped intracellular domains dimerize selectively into collagen IV receptors expressed at high levels on the surface. However, these receptors, which bind ligand efficiently, are deficient in a variety of post-ligand binding events, including cytoskeletal association and induction of tyrosine phosphorylation. Furthermore, deletion of the distal alpha cytoplasmic domain in the swapped heterodimers leads to ligand-independent focal contact localization, which also occurs in wild-type subunits when the distal cytoplasmic domain is deleted. These results show that proper integrin assembly requires opposed alpha and beta cytoplasmic domains, and this opposition prevents ligand-independent focal contact localization. Our working hypothesis is that these two domains may associate during receptor assembly and provide the mechanism for integrin receptor latency.  相似文献   

18.
To carry out a detailed comparison of the roles of integrin beta 1 and beta 5 cytoplasmic domains, we expressed both wild type beta 1 and chimeric beta 1/5 constructs in CHO cells. In the latter, the cytoplasmic domain of beta 1 was replaced with that of beta 5. The human beta 1 and beta 1/5 constructs appeared at similar levels at the cell surface (mostly as alpha 5 beta 1 heterodimers) and contributed equally to CHO cell adhesion to fibronectin. However, beta 1 but not beta 1/5 localized to focal adhesion-like structures when CHO cells were spread on fibronectin. Furthermore, only the beta 1-CHO cells showed increased proliferation in response to fibronectin plus an integrin-activating anti-beta 1 antibody, and showed increased appearance of 32P-labeled protein (p90) that correlated with proliferation. In sharp contrast, the beta 1/5-CHO cells were notably more migratory than beta 1-CHO cells in a transwell haptotactic migration assay. These results indicate that the beta 1 and beta 5 integrin subunit cytoplasmic domains can translate similar adhesive information into highly contrasting subsequent events. Thus, we have established that "inside-out" and "outside-in" integrin signaling pathways are regulated by fundamentally distinct mechanisms. In addition, we suggest that the same properties of the beta 1 cytoplasmic domain that promote recruitment to visible focal adhesion-like structures may also be conductive to cell proliferation. Conversely, the properties of the beta 5 tail that make it less likely to localize into focal adhesion-like structures may contribute to enhanced cell migration.  相似文献   

19.
Specificity and modulation of integrin function have important consequences for cellular responses to the extracellular matrix, including differentiation and transformation. The Ras-related GTPase, R-Ras, modulates integrin affinity, but little is known of the signaling pathways and biological functions downstream of R-Ras. Here we show that stable expression of activated R-Ras or the closely related TC21 (R-Ras 2) induced integrin-mediated migration and invasion of breast epithelial cells through collagen and disrupted differentiation into tubule structures, whereas dominant negative R-Ras had opposite effects. These results imply novel roles for R-Ras and TC21 in promoting a transformed phenotype and in the basal migration and polarization of these cells. Importantly, R-Ras induced an increase in cellular adhesion and migration on collagen but not fibronectin, suggesting that R-Ras signals to specific integrins. This was further supported by experiments in which R-Ras enhanced the migration of cells expressing integrin chimeras containing the alpha2, but not the alpha5, cytoplasmic domain. In addition, a transdominant inhibition previously noted only between integrin beta cytoplasmic domains was observed for the alpha2 cytoplasmic domain; alpha2beta1-mediated migration was inhibited by the expression of excess alpha2 but not alpha5 cytoplasmic domain-containing chimeras, suggesting the existence of limiting factors that bind the integrin alpha subunit. Using pharmacological inhibitors, we found that R-Ras induced migration on collagen through a combination of phosphatidylinositol 3-kinase and protein kinase C, but not MAPK, which is distinct from the other Ras family members, Rac, Cdc42, and N- and K-Ras. Thus, R-Ras communicates with specific integrin alpha cytoplasmic domains through a unique combination of signaling pathways to promote cell migration and invasion.  相似文献   

20.
Regulation of integrin affinity and clustering plays a key role in the control of cell adhesion and migration. The protein ICAP-1 alpha (integrin cytoplasmic domain-associated protein-1 alpha) binds to the cytoplasmic domain of the beta(1A) integrin and controls cell spreading on fibronectin. Here, we demonstrate that, despite its ability to interact with beta(1A) integrin, ICAP-1 alpha is not recruited in focal adhesions, whereas it is colocalized with the integrin at the ruffling edges of the cells. ICAP-1 alpha induced a rapid disruption of focal adhesions, which may result from the ability of ICAP-1 alpha to inhibit the association of beta(1A) integrin with talin, which is crucial for the assembly of these structures. ICAP-1 alpha-mediated dispersion of beta(1A) integrins is not observed with beta(1D) integrins that do not bind ICAP. This strongly suggests that ICAP-1 alpha action depends on a direct interaction between ICAP-1 alpha and the cytoplasmic domain of the beta(1) chains. Altogether, these results suggest that ICAP-1 alpha plays a key role in cell adhesion by acting as a negative regulator of beta(1) integrin avidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号