首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The Hrp pathogenicity island (hrpPAI) of Erwinia amylovora not only encodes a type III secretion system (T3SS) and other genes required for pathogenesis on host plants, but also includes the so-called island transfer (IT) region, a region that originates from an integrative conjugative element (ICE). Comparative genomic analysis of the IT regions of two Spiraeoideae- and three Rubus-infecting strains revealed that the regions in Spiraeoideae-infecting strains were syntenic and highly conserved in length and genetic information, but that the IT regions of the Rubus-infecting strains varied in gene content and length, showing a mosaic structure. None of the ICEs in E. amylovora strains were complete, as conserved ICE genes and the left border were missing, probably due to reductive genome evolution. Comparison of the hrpPAI region of E. amylovora strains to syntenic regions from other Erwinia spp. indicates that the hrpPAI and the IT regions are the result of several insertion and deletion events that have occurred within the ICE. It also suggests that the T3SS was present in a common ancestor of the pathoadapted Erwinia spp. and that insertion and deletion events in the IT region occurred during speciation.  相似文献   

2.
Dong Han 《FEBS letters》2009,583(12):1928-21656
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are ubiquitous in archaea and eubacteria. It has been suggested that CRISPR and CAS proteins act as an immune system preventing the invasion of foreign genomic elements at the DNA level. The protein SSO1450 from Sulfolobus solfataricus (Sso) P2 belongs to the CAS1 cluster which is one of the core protein clusters most frequently associated with CRISPR sequences. In this study we show that SSO1450 is a high-affinity nucleic acid binding protein. It binds DNA, RNA and DNA-RNA hybrid apparently sequence non-specific in a multi-site binding mode. Furthermore, SSO1450 promotes the hybridization of complementary nucleic acid strands.  相似文献   

3.
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号