首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
Bacterial strains isolated from nitrogen-fixing nodules of Lupinus mariae-josephae have been characterized following genetic, phenotypic and symbiotic approaches. Analysis of 16S rRNA genes placed them in a group together with Bradyrhizobium elkanii USDA 76T, B. pachyrhizi PAC48T, B. jicamae PAC68T, ‘B. retamae’ Ro19T and B. lablabi CCBAU 23086T with over 99.0% identity. Phylogenetic analysis of concatenated housekeeping genes, recA, atpD and glnII, suggested that L. mariae-josephae strains represent a new Bradyrhizobium species, closely related to B. lablabi CCBAU 23086T, B. jicamae PAC68T and ‘B. retamae’ Ro19T with 92.1, 91.9 and 90.8% identity, respectively. These results are consistent with overall genomic identities calculated as Average Nucleotide Identity (ANIm) using draft genomic sequences obtained for relevant strains. While L. mariae-josephae strains LmjM3T/LmjM6 exhibited a 99.2% ANIm value, they were significantly distant (<93% ANIm) from type strains of their closest species (‘B. retamae’ Ro19T, B. lablabi CCBAU 23086T and B. jicamae PAC68T). Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (WC-MALDI-TOF-MS) analysis of proteomic patterns of the same strains was consistent with these results. The symbiosis-related genes nodC, nodA and nifH genes from strains nodulating L. mariae-josephae were phylogenetically related to those from ‘B. retamae’ Ro19T, but divergent from those of strains that nodulate other lupine species. Based on genetic, genomic, proteomic and phenotypic data presented in this study, L. mariae-josephae nodulating strains LmjM3T, LmjM6 and LmjM2 should be grouped within a new species for which the name Bradyrhizobium valentinum sp. nov. is proposed (type strain LmjM3T = CECT 8364T, LMG 2761T)  相似文献   

3.
The genetic diversity of root nodulating bacteria isolated from Retama sphaerocarpa was studied using BOX-A1R PCR and phylogenetic analysis of the 16S rRNA region, as well as the housekeeping genes atpD, glnII and recA. A total of 193 isolates were obtained from eight different sites with different soil and environmental conditions in the Iberian Peninsula. These isolates corresponded to 31 different strains that successfully nodulated R. sphaerocarpa seedlings in reinoculation trials. About one-third of the strains clustered with B. canariense or B. cytisi within Bradyrhizobium group I. The remaining strains clustered with B. elkanii/B. pachyrhizi within Bradyrhizobium group II or in separate clades that could represent new lineages. Based on the 16S rRNA and combined atpD + glnII + recA sequences, two to three lineages of root nodulating bacteria were found at each sampling site, except for Collado Garcia where five species were detected. B. canariense and B. elkanii/B. pachyrhizi were the most abundant species, whereas the least abundant were those related to B. retamae and a putative new lineage. B. canariense was found only in soils with neutral and acid pH, whereas B. retamae was the dominant species in alkaline soils.  相似文献   

4.
Twenty-three bacterial strains isolated from root nodules of Arachis hypogaea and Lablab purpureus grown in five provinces of China were classified as a novel group within the genus Bradyrhizobium by analyses of PCR-based RFLP of the 16S rRNA gene and 16S–23S IGS. To determine their taxonomic position, four representative strains were further characterized. The comparative sequence analyses of 16S rRNA and six housekeeping genes clustered the four strains into a distinctive group closely related to the defined species Bradyrhizobium liaoningense, Bradyrhizobium yuanmingense, Bradyrhizobium huanghuaihaiense, Bradyrhizobium japonicum and Bradyrhizobium daqingense. The DNA–DNA relatedness between the reference strain of the novel group, CCBAU 051107T, and the corresponding type strains of the five mentioned species varied between 46.05% and 13.64%. The nodC and nifH genes of CCBAU 051107T were phylogenetically divergent from those of the reference strains for the related species. The four representative strains could nodulate with A. hypogaea and L. purpureus. In addition, some phenotypic features differentiated the novel group from the related species. Based on all the results, we propose a new species Bradyrhizobium arachidis sp. nov. and designate CCBAU 051107T (=CGMCC 1.12100T = HAMBI 3281T = LMG 26795T) as the type strain, which was isolated from a root nodule of A. hypogaea and had a DNA G + C mol% of 60.1 (Tm).  相似文献   

5.
In a survey of rhizobia associated with the native legumes in Yunnan Province, China, seven and nine strains isolated from the root nodules of Psoralea corylifolia, Sesbania cannabina and Medicago lupulina were respectively classified into the novel genomic species groups I and II in the genus Ensifer (former Sinorhizobium) based on the sequence analyses of the 16S rRNA gene. Analyses of concatenated housekeeping genes (atpD, recA and glnII) further revealed that they were distinct lineages in the genus, and group I was most similar to Ensifer terangae and Ensifer garamanticus (both with 94.2% similarity), while group II was most similar to Ensifer adhaerens (94.0%). These groups could be distinguished from closely related species by DNA–DNA relatedness, MALID-TOF MS, cellular fatty acid profiles and a series of phenotypic characters. Therefore, two novel species were proposed: Ensifer psoraleae sp. nov. (seven strains, type strain CCBAU 65732T = LMG 26835T = HAMBI 3286T) and Ensifer sesbaniae sp. nov. (nine strains, type strain CCBAU 65729T = LMG 26833T = HAMBI 3287T). They had a DNA G + C mol% (Tm) of 58.9 and 60.4, respectively. Both of the type strains formed effective nodules on common bean (Phaseolus vulgaris) and their hosts of origin. In addition, the previously described species Sinorhizobium morelense and Sinorhizobium americanum were renamed as Ensifer morelense comb. nov. and Ensifer americanum comb. nov. according to the accumulated data from different studies.  相似文献   

6.
Gram-negative, facultatively anaerobic bacteria were isolated from symptomatic oak tissue in the UK and USA. Partial gyrB sequencing placed ten strains in the genus Brenneria, with B. goodwinii as the closest phylogenetic relative. The strains were investigated further using a polyphasic approach including MLSA (based on partial gyrB, rpoB, infB and atpD gene sequences), 16S rRNA gene sequencing, DNA–DNA relatedness studies and both phenotypic and chemotaxonomic assays. The MLSA and 16S rRNA gene analyses separated the strains into two groups based on origin, suggesting that they belong to Brenneria as two novel species. However, the DNA–DNA relatedness values revealed a closer relationship between the groups and indicated that they should belong to the same species. As the two groups of strains from the UK and USA can be differentiated from each other phenotypically and by ERIC PCR fingerprints, it is proposed to classify them as novel subspecies of a novel Brenneria species. The name Brenneria roseae sp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) is proposed, with Brenneria roseae subsp. roseae ssp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) for the strains from the UK and Brenneria roseae subsp. americana ssp. nov. (FRB 223T = LMG 27715T = NCPPB 4582T) for the strains from the USA.  相似文献   

7.
Bacterial strains from inoculated soybean field soil in Thailand were directly isolated using Bradyrhizobium japonicum selective medium (BJSM), on the basis of Zn2+ and Co2+ resistance of B. japonicum and B. elkanii. The isolates were classified into symbiotic and non-symbiotic groups by inoculation assays and Southern hybridization of nod and nif genes. In this study, a nearly full-length 16S rRNA gene sequence showed that the non-symbiotic isolates were more closely related to members of Rhodopseudomonas and to a number of uncultured bacterial clones than to members of Bradyrhizobium. Therefore, a polyphasic study was performed to determine the taxonomic positions of four representatives of the non-symbiotic isolates. Multilocus phylogenetic analysis of individual genes and a combination of the 16S rRNA and three housekeeping genes (atpD, recA and glnII) supported the placement of the non-symbiotic isolates in a different genus. The ability of heavy metal resistance in conjunction with phenotypic analyses, including cellular fatty acid content and biochemical characteristics, showed that the non-symbiotic isolates were differentiated from the other related genera in the family Bradyrhizobiaceae. Therefore, the non-symbiotic isolates represented a novel genus and species, for which the name Metalliresistens boonkerdii gen. nov., sp. nov. is proposed. The type strain is NS23 (= NBRC 106595T = BCC 40155T).  相似文献   

8.
Two Gram-staining-negative, moderately halophilic bacteria, strains M1-18T and L1-16, were isolated from a saltern located in Huelva (Spain). They were motile, strictly aerobic rods, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–10% [w/v] NaCl), between pH 4.0 and 9.0 (optimal at pH 6.0–7.0) and at temperatures between 15 and 40 °C (optimal at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed the higher similarity values with Chromohalobacter israelensis ATCC 43985T (95.2–94.8%) and Chromohalobacter salexigens DSM 3043T (95.0–94.9%), and similarity values lower than 94.6% with other species of the genera Chromohalobacter, Kushneria, Cobetia or Halomonas. Multilocus sequence analysis (MLSA) based on the partial sequences of atpA, rpoD and secA housekeeping genes indicated that the new isolates formed an independent and monophyletic branch that was related to the peripheral genera of the family Halomonadaceae, Halotalea, Carnimonas and Zymobacter, supporting their placement as a new genus of the Halomonadaceae. The DNA–DNA hybridization between both strains was 82%, whereas the values between strain M1-18T and the most closely related species of Chromohalobacter and Kushneria were equal or lower to 48%. The major cellular fatty acids were C18:1ω7c/C18:1ω6c, C16:0, and C16:1ω7c/C16:1ω6c, a profile that differentiate this new taxon from species of the related genera. We propose the placement of both strains as a novel genus and species, within the family Halomonadaceae, with the name Larsenia salina gen. nov., sp. nov. The type strain is M1-18T (= CCM 8464 = CECT 8192T = IBRC-M 10767T = LMG 27461T).  相似文献   

9.
10.
11.
The phenotypic and genotypic characteristics of seventeen Achromobacter strains representing MLST genogroups 2, 5, 7 and 14 were examined. Although genogroup 2 and 14 strains shared a DNA–DNA hybridization level of about 70%, the type strains of both genogroups differed in numerous biochemical characteristics and all genogroup 2 and 14 strains could by distinguished by nitrite reduction, denitrification and growth on acetamide. Given the MLST sequence divergence which identified genogroups 2 and 14 as clearly distinct populations, the availability of nrdA sequence analysis as a single locus identification tool for all Achromobacter species and genogroups, and the differential phenotypic characteristics, we propose to formally classify Achromobacter genogroups 2, 5, 7 and 14 as four novel Achromobacter species for which we propose the names Achromobacter insuavis sp. nov. (with strain LMG 26845T [= CCUG 62426T] as the type strain), Achromobacter aegrifaciens sp. nov. (with strain LMG 26852T [= CCUG 62438T] as the type strain), Achromobacter anxifer sp. nov. (with strain LMG 26857T [= CCUG 62444T] as the type strain), and Achromobacter dolens sp. nov. (with strain LMG 26840T [= CCUG 62421T] as the type strain).  相似文献   

12.
The phylogeny and taxonomic position of slow-growing Genista tinctoria rhizobia from Poland, Ukraine and England were estimated by comparative 16S rDNA, atpD, and dnaK sequence analyses, PCR-RFLP of 16S rDNA, DNA G + C content, and DNA–DNA hybridization. Each core gene studied placed the G. tinctoria rhizobia in the genus Bradyrhizobium cluster with unequivocal bootstrap support. G. tinctoria symbionts and bradyrhizobial strains shared 96–99% similarity in 16S rDNA sequences. Their similarity for atpD and dnaK sequences was 93–99% and 89–99%, respectively. These data clearly showed that G. tinctoria rhizobia belonged to the genus Bradyrhizobium. 16S rDNA sequence analysis was in good agreement with the results of the PCR-RFLP of the 16S rRNA gene. Although the tested strains formed separate lineages to the reference bradyrhizobia their RFLP 16S rDNA patterns were quite similar. The genomic DNA G + C content of three G. tinctoria rhizobia was in the range from 60.64 to 62.83 mol%. Data for species identification were obtained from DNA–DNA hybridization experiments. G. tinctoria microsymbionts from Poland were classified within Bradyrhizobium japonicum genomospecies based on 56–82% DNA–DNA similarity.  相似文献   

13.
Two isolates, with an optimum growth temperature of about 45–50 °C and an optimum pH for growth between 7.5 and 8.5, were recovered from a hot spring in the Furnas area on the Island of São Miguel in the Azores. Strains form irregular rod-shaped cells are motile and stain Gram negative. The cells multiply by budding. These strains are non-pigmented, strictly aerobic, catalase and oxidase positive. These organisms assimilated carbohydrates, organic acids and amino acids. The major fatty acids are 19:0cyclo ω8c and 18:0. Ubiquinone 10 is the major respiratory quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine in addition to one unidentified aminolipid and one unidentified glycolipid. Bacteriochlorophyll a, puf genes and RuBisCo genes were not detected. Analysis of the 16S rRNA gene shows the strains to cluster with species of the genera Afifella, Rhodobium, Anderseniella and Amorphus to which they have sequence similarity in the range 93–94%. Based on 16S rRNA gene sequence analysis, physiological and biochemical characteristics we describe a new species of a novel genus represented by strain CB-27AT (=DSM 19345T=LMG 24113T) for which we propose the name Tepidamorphus gemmatus.  相似文献   

14.
15.
Five Mycoplasma strains from wild Caprinae were analyzed: four from Alpine ibex (Capra ibex) which died at the Berlin Zoo between 1993 and 1994, one from a Rocky Mountain goat collected in the USA prior to 1987. These five strains represented a population different from the populations belonging to the ‘Mycoplasma mycoides cluster’ as tested using multi locus sequence typing, Matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis and DNA–DNA hybridization. Analysis of the 16S rRNA gene (rrs), genomic sequence based in silico as well as laboratory DNA–DNA hybridization, and the analysis of phenotypic traits in particular their exceptionally rapid growth all confirmed that they do not belong to any Mycoplasma species described to date. We therefore suggest these strains represent a novel species, for which we propose the name Mycoplasma feriruminatoris sp. nov. The type strain is G5847T (= DSM 26019T = NCTC 1362T).  相似文献   

16.
Seventeen fructose-6-phosphate phosphoketolase-positive bacterial strains were isolated from the digestive tract of wild pigs (Sus scrofa). Most of them were identified as Bifidobacterium boum according to sequences of 16S rRNA gene. Two strains isolated from the small intestine content had unusual morphology of cells in comparison with bifidobacteria. Cells growing in liquid anaerobic media were regular shaped rods arranged mostly in pairs. These isolates showed relatively low 16S rRNA gene sequence similarities (maximum identity of 94%) to members of the family Bifidobacteriaceae. Nevertheless, phylogenetic analyses of 16S rRNA, hsp60 and xfp gene sequences revealed that these strains are more related to recently described Neoscardovia, Aeriscardovia and other scardovial genera, than to Bifidobacterium species. Partial gene sequences of other phylogenetic markers showed low (65.8–89.5%) similarities to genome sequences of bifidobacteria and Gardnerella vaginalis. The major fatty acids detected in cells of the representative strain DPTE4T were C16:0, C18:1, C14:0. The peptidoglycan type of the DPTE4T strain was A3β l-Orn(l-Lys)-l-Ser(l-Ala)-l-Ala2. Polar lipid analysis revealed two phosphoglycolipids and phospholipids, a glycolipid and diphosphatidylglycerol. The results of phylogenetic, genotypic and phenotypic analyses support the proposal of a novel taxa, Pseudoscardovia suis gen. nov., sp. nov. (type strain = DPTE4T = DSM 24744T = CCM 7942T).  相似文献   

17.
Five strains of gram negative bacteria, isolated from soybean (LPPA 221T, 222 and 223) and weeds (LPPA 816 and 1442), were analyzed by a polyphasic approach. The isolates showed variation in their phenotypic traits and were placed in the Pseudomonas fluorescens lineage, based on 16S rRNA gene sequence phylogeny, as a single but well separated cluster. MLSA analysis based on gyrB and rpoD sequences clustered the strains in a single branch in the Pseudomonas syringae group, and revealed P. viridiflava as closest relative. DNA–DNA hybridizations showed medium levels of DNA–DNA relatedness with the type strain of P. viridiflava (50%) and lower levels (<32%) with other type strains of the P. syringae group, supporting classification within a novel species of the genus Pseudomonas. The strains can be distinguished from species of the P. syringae group by the fatty acid C17:0 cyclo that is present in a low amount (2.5%) and from P. viridiflava by their inability to assimilate d-tartrate and d-sorbitol, and by the formation of red colonies on TTC medium. For this new species, the name Pseudomonas asturiensis sp. nov. is proposed. The type strain is LPPA 221T (=LMG 26898T = CECT 8095T).  相似文献   

18.
Aiming at learning the microsymbionts of Arachis duranensis, a diploid ancestor of cultivated peanut, genetic and symbiotic characterization of 32 isolates from root nodules of this plant grown in its new habitat Guangzhou was performed. Based upon the phylogeny of 16S rRNA, atpD and recA genes, diverse bacteria belonging to Bradyrhizobium yuanmingense, Bradyrhizobium elkanii, Bradyrhizobium iriomotense and four new lineages of Bradyrhizobium (19 isolates), Rhizobium/Agrobacterium (9 isolates), Herbaspirillum (2 isolates) and Burkholderia (2 isolates) were defined. In the nodulation test on peanut, only the bradyrhizobial strains were able to induce effective nodules. Phylogeny of nodC divided the Bradyrhizobium isolates into four lineages corresponding to the grouping results in phylogenetic analysis of housekeeping genes, suggesting that this symbiosis gene was mainly maintained by vertical gene transfer. These results demonstrate that A. duranensis is a promiscuous host preferred the Bradyrhizobium species with different symbiotic gene background as microsymbionts, and that it might have selected some native rhizobia, especially the novel lineages Bradyrhizobium sp. I and sp. II, in its new habitat Guangzhou. These findings formed a basis for further study on adaptation and evolution of symbiosis between the introduced legumes and the indigenous rhizobia.  相似文献   

19.
In this study, a polyphasic approach was used to analyze three representative strains (LmiH4, LmiM2 and LmiT21) from a collection of six previously described strains isolated in Tunisia from root nodules of Lupinus micranthus. The phylogenetic analysis of the concatenated rrs, recA and glnII genes showed that strain LmiH4 had 100% concatenated gene sequence identity with the type strain Bradyrhizobium retamae Ro19T. Similarly, strain LmiM2 shared 100% concatenated gene sequence identity with the species Bradyrhizobium valentinum LmjM3T. However, strain LmiT21 showed an identical concatenated gene sequence with reference strain Phyllobacterium sophorae CCBAU03422T. The recA-glnII concatenated protein-coding genes used produced incongruent phylogenies compared with 16S rDNA phylogeny. The nodC gene analysis showed that the strains were phylogenetically divergent to the Bradyrhizobium symbiovars defined to date, and represented two new symbiovars. Plant infection analysis revealed that the three strains showed moderate host range and symbiotic specificities.Based on their symbiotic characteristics, we propose that the three strains isolated from Lupinus micranthus nodules belong to two new symbiovars, with the first denominated lupini within the two species Bradyrhizobium valentinum (type strain LmiM2) and B. retamae (type strain LmiH4), and the second denominated mediterranense within the species P. sophorae (type strain LmiT21).  相似文献   

20.
Two red-pigmented isolates, with optimum growth temperatures between 45 and 50 °C, were recovered from a hot spring in the Furnas, Área da Fonte 1825 on the Island of São Miguel in the Azores. Phylogenetic analysis of the 16S rRNA gene sequences showed that these organisms represented a new species of the genus Meiothermus. These new isolates could be distinguished from other strains of the species of the genus Meiothermus primarily by the fatty acid composition and polar lipid pattern, since they did not possess 2-OH fatty acids or glycolipid variant GL-1a. Moreover, the two new isolates had the lowest growth temperature range of any of the known species of the genus Meiothermus. On the basis of the results presented here we propose the name Meiothermus granaticius for the new species represented by strains AF-68T (=DSM 23260T = LMG 25524T) and AF-49 (=DSM 23259 = LMG 25525).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号