首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nineteen bacteria isolates recovered from shellfish samples (mussels and oysters) showed a new and specific 16S rDNA-RFLP pattern with an Arcobacter identification method designed to recognize all species described up to 2008. These results suggested that they could belong to a new species. ERIC-PCR revealed that the 19 isolates belonged to 3 different strains. The sequence of the 16S rRNA gene of a representative strain (F98-3T) showed 97.6% similarity with the closest species Arcobacter marinus followed by Arcobacter halophilus (95.6%) and Arcobacter mytili (94.7%). The phylogenetic analysis with the16S rRNA, rpoB, gyrB and hsp60 genes placed the shellfish strains within the same cluster as the three species mentioned (also isolated from saline habitats) but they formed an independent phylogenetic line. The DDH results between strain F98-3T and A. marinus (54.8% ± 1.05), confirmed that it represents a new species. Several biochemical tests differentiated the shellfish isolates from all other Arcobacter species. Although the new species was different from A. mytili, they shared not only the same habitat (mussels) but also the characteristic of being so far the only Arcobacter species that are simultaneously negative for urea and indoxyl acetate hydrolysis. All results supported the classification of the shellfish strains as a new species, for which the name Arcobacter molluscorum sp. nov. with the type strain F98-3T is proposed (=CECT 7696T = LMG 25693T).  相似文献   

2.
As part of a study carried out for detecting Arcobacter spp. in shellfish, three mussel isolates that were Gram-negative slightly curved rods, non-spore forming, showed a new 16S rDNA-RFLP pattern with a specific identification method for the species of this genus. Sequences of the 16S rRNA gene and those of the housekeeping genes rpoB, gyrB and hsp60 provided evidence that these mussel strains belonged to an unknown genetic lineage within the genus Arcobacter. The similarity between the 16S rRNA gene sequence of the representative strain (F79-6T) and type strains of the other Arcobacter species ranged between 94.1% with A. halophilus and 99.1% with the recently proposed species A. defluvii (CECT 7697T). DDH results between strain F79-6T and the type strain of the latter species were below 70% (53 ± 3.0%). Phenotypic characteristics together with MALDITOF mass spectra differentiated the new mussel strains from all other Arcobacter species. All the results indicate that these strains represent a new species, for which the name Arcobacter ellisii sp. nov. with the type strain F79-6T (=CECT 7837T = LMG 26155T) is proposed.  相似文献   

3.
4.
Two isolates, one recovered from a carrot and another one from urban wastewater, were characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both isolates clustered together, and were most closely related to Aliarcobacter lanthieri. Multilocus phylogenetic analysis (MLPA) using the concatenated sequences of five housekeeping genes (atpA, gyrA, gyrB, hsp60 and rpoB) suggested that these isolates formed a distinct phylogenetic lineage among the genera derived from the former genus Arcobacter. Whole-genome sequence, in silico DNA-DNA hybridization (isDDH) and the average nucleotide identity (ANI) value between the genome of strain F199T and those of related species confirmed that these isolates represent a novel species. These strains can be differentiated from its phylogenetically closest species A. lanthieri by its inability to growth on 1% glycine and by their enzyme activity of esterase lipase (C8) and acid phosphatase. Our results, by the application of a polyphasic analysis, confirmed that these two isolates represent a novel species of the genus Aliarcobacter, for which the name Aliarcobacter vitoriensis sp. nov. is proposed. The type strain is F199T (=CECT 9230T=LMG 30050T).  相似文献   

5.
Four isolates of Gram-negative facultatively anaerobic bacteria, three of them producing NDM-1 carbapenemase, were isolated from hospitalized patients and outpatients attending two military hospitals in Rawalpindi, Pakistan, and studied for their taxonomic position. Initially the strains were phenotypically identified as Citrobacter species. Comparative analysis of 16S rRNA gene sequences then showed that the four strains shared >97%, but in no case >98.3%, 16S rRNA gene sequence similarities to members of the genera Citrobacter, Kluyvera, Pantoea, Enterobacter and Raoultella, but always formed a separate cluster in respective phylogenetic trees. Based on multilocus sequence analysis (MLSA) including partial recN, rpoA, thdF and rpoB gene sequence and respective amino acid sequence analysis it turned out that the strains also here always formed separate clusters. Based on further comparative analyses including DNA–DNA hybridizations, genomic fingerprint analysis using rep- and RAPD-PCRs and physiological tests, it is proposed to classify these four strains into the novel genus Pseudocitrobacter gen. nov. with a new species Pseudocitrobacter faecalis sp. nov. with strain 25 CITT (= CCM 8479T = LMG 27751T) and Pseudocitrobacter anthropi sp. nov. with strain C138T (= CCM 8478T = LMG 27750T), as the type strains, respectively.  相似文献   

6.
Three strains, H01100409BT, H01100413B, and H27100402HT, were isolated from several internal organs of diseased redbanded seabream (Pagrus auriga) reared in Andalusia (Southern Spain). All strains were studied by phenotypic, including chemotaxonomy, and genomic characteristics. Phylogenetic analysis based on concatenated sequences of six housekeeping genes (gyrB, ftsZ, topA, mreB, gapA, and 16S rRNA) supported the inclusion of the strains within the clade Phosphoreum of the genus Photobacterium, and two of the strains (H27100402HT and H01100409BT) formed a tight group separated from the closest species P. aquimaris. Genomic analyses, including average nucleotide identity (ANIb and ANIm) and DNA–DNA hybridization (DDH), clearly separated strains H27100402HT and H01100409BT from the other species within the clade Phosphoreum with values below the thresholds for species delineation. The chemotaxonomic features (including FAME analysis and MALDI-TOF-MS) of H27100402HT and H01100409BT strains confirmed their differentiation from the related taxa. The results demonstrated that strain H01100413B was classified as P. aquimaris and the strains H27100402HT and H01100409BT represented a new species each in the genus Photobacterium, for which we propose the names Photobacterium malacitanum sp. nov., type strain H27100402HT (=CECT 9190T = LMG 29992T), and Photobacterium andalusiense sp. nov., type strain H01100409BT (=CECT 9192T = LMG 29994T).  相似文献   

7.
Gram-negative, facultatively anaerobic bacteria were isolated from symptomatic oak tissue in the UK and USA. Partial gyrB sequencing placed ten strains in the genus Brenneria, with B. goodwinii as the closest phylogenetic relative. The strains were investigated further using a polyphasic approach including MLSA (based on partial gyrB, rpoB, infB and atpD gene sequences), 16S rRNA gene sequencing, DNA–DNA relatedness studies and both phenotypic and chemotaxonomic assays. The MLSA and 16S rRNA gene analyses separated the strains into two groups based on origin, suggesting that they belong to Brenneria as two novel species. However, the DNA–DNA relatedness values revealed a closer relationship between the groups and indicated that they should belong to the same species. As the two groups of strains from the UK and USA can be differentiated from each other phenotypically and by ERIC PCR fingerprints, it is proposed to classify them as novel subspecies of a novel Brenneria species. The name Brenneria roseae sp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) is proposed, with Brenneria roseae subsp. roseae ssp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) for the strains from the UK and Brenneria roseae subsp. americana ssp. nov. (FRB 223T = LMG 27715T = NCPPB 4582T) for the strains from the USA.  相似文献   

8.
Twelve Acetobacter pasteurianus-related strains with publicly available genomes in GenBank shared high 16S rRNA gene sequence similarity (>99.59%), but average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) values and multilocus sequence- and genome-based relatedness analyses suggested that they were divided into four different phylogenetic lineages. Relatedness analyses based on multilocus sequences, 1,194 core genes and whole-cell MALDI-TOF profiles supported that strains LMG 1590T and LMG 1591 (previously classified as the type strains of A. pasteurianus subsp. ascendens and paradoxus, respectively) and strain SLV-7T do not belong to A. pasteurianus. Strain SLV-7T, isolated from Korean traditional vinegar, shared low ANI (<91.0%) and in silico DDH (44.2%) values with all other Acetobacter type strains analyzed in this study, indicating that strain SLV-7T represents a new Acetobacter species. The phenotypic and chemotaxonomic analyses confirmed these results and therefore a new species named Acetobacter oryzifermentans sp. nov. is proposed with SLV-7T (= KACC 19301T = JCM 31096T) as the type strain. Strains LMG 1590T and LMG 1591 shared high ANI (99.4%) and in silico DDH (96.0%) values between them, but shared low ANI (<92.3%) and in silico DDH (<49.0%) values with other type strains analyzed in this study, indicating that strains LMG 1590T and LMG 1591 should be reclassified into a new single species that should be named Acetobacter ascendens sp. nov., comb. nov., with LMD 51.1T (= LMG 1590T = NCCB 51001T) as its type strain.  相似文献   

9.
Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529T and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Tr?ek and Teuber [34] revealed the same but unique restriction profiles for LMG 1529T and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA–DNA hybridizations confirmed their novel species identity by 73% DNA–DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529T and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529T and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529T and SKU 1109 is C18:1ω7c (60.2–64.8%). The DNA G + C content of LMG 1529T and SKU 1109 is 62.5 and 63.3 mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529T (= NBRC 14815T = NCIMB 8752T).  相似文献   

10.
The phenotypic and genotypic characteristics of fourteen human clinical Achromobacter strains representing four genogroups which were delineated by sequence analysis of nusA, eno, rpoB, gltB, lepA, nuoL and nrdA loci, demonstrated that they represent four novel Achromobacter species. The present study also characterized and provided two additional reference strains for Achromobacter ruhlandii and Achromobacter marplatensis, species for which, thus far, only single strains are publicly available, and further validated the use of 2.1% concatenated nusA, eno, rpoB, gltB, lepA, nuoL and nrdA sequence divergence as a threshold value for species delineation in this genus. Finally, although most Achromobacter species can be distinguished by biochemical characteristics, the present study also highlighted considerable phenotypic intraspecies variability and demonstrated that the type strains may be phenotypically poor representatives of the species. We propose to classify the fourteen human clinical strains as Achromobacter mucicolens sp. nov. (with strain LMG 26685T [=CCUG 61961T] as the type strain), Achromobacter animicus sp. nov. (with strain LMG 26690T [=CCUG 61966T] as the type strain), Achromobacter spiritinus sp. nov. (with strain LMG 26692T [=CCUG 61968T] as the type strain), and Achromobacter pulmonis sp. nov. (with strain LMG 26696T [=CCUG 61972T] as the type strain).  相似文献   

11.
Four strains (M15∅_3, M17T, M49 and R37T) were isolated from Mediterranean seawater at Malvarrosa beach, Valencia, Spain. Together with an older preserved isolate (strain 2OM6) from cultured oysters at Vinaroz, Castellón, Spain, the strains were thoroughly characterized in a polyphasic study and were placed phylogenetically within the Roseobacter clade in the family Rhodobacteraceae. Highest 16S rRNA sequence similarities of the five strains to the types of any established species corresponded to Tropicibacter multivorans (95.8–96.4%), Phaeobacter inhibens (95.9–96.3%) and Phaeobacter gallaeciensis (95.9–96.2%). On the other hand, whole genome (ANI) and protein fingerprinting (MALDI-TOF) data proved: (i) non clonality among the strains, and (ii) the existence of two genospecies, one consisting of strains M15∅_3, M17T, M49 and 2OM6 and another one consisting of strain R37T. Phenotypic traits determined allow differentiating both genospecies from each other and from closely related taxa. In view of all data collected we propose to accommodate these isolates in two species as members of the genus Tropicibacter, Tropicibacter mediterraneus sp. nov. (type strain M17T = CECT 7615T = KCTC 23058T) and Tropicibacter litoreus sp. nov. (type strain R37T = CECT 7639T = KCTC 23353T).  相似文献   

12.
In a survey of rhizobia associated with the native legumes in Yunnan Province, China, seven and nine strains isolated from the root nodules of Psoralea corylifolia, Sesbania cannabina and Medicago lupulina were respectively classified into the novel genomic species groups I and II in the genus Ensifer (former Sinorhizobium) based on the sequence analyses of the 16S rRNA gene. Analyses of concatenated housekeeping genes (atpD, recA and glnII) further revealed that they were distinct lineages in the genus, and group I was most similar to Ensifer terangae and Ensifer garamanticus (both with 94.2% similarity), while group II was most similar to Ensifer adhaerens (94.0%). These groups could be distinguished from closely related species by DNA–DNA relatedness, MALID-TOF MS, cellular fatty acid profiles and a series of phenotypic characters. Therefore, two novel species were proposed: Ensifer psoraleae sp. nov. (seven strains, type strain CCBAU 65732T = LMG 26835T = HAMBI 3286T) and Ensifer sesbaniae sp. nov. (nine strains, type strain CCBAU 65729T = LMG 26833T = HAMBI 3287T). They had a DNA G + C mol% (Tm) of 58.9 and 60.4, respectively. Both of the type strains formed effective nodules on common bean (Phaseolus vulgaris) and their hosts of origin. In addition, the previously described species Sinorhizobium morelense and Sinorhizobium americanum were renamed as Ensifer morelense comb. nov. and Ensifer americanum comb. nov. according to the accumulated data from different studies.  相似文献   

13.
Three forest and four botanical garden top soil isolates with unique MALDI-TOF mass spectra were identified as Paraburkholderia strains closely related to Paraburkholderia sartisoli through recA gene sequence analysis. OrthoANIu, digital DNA-DNA hybridization analyses and phylogenomic analyses demonstrated that the five strains represented two new Paraburkholderia species closely related to P. sartisoli. The genome of strain LMG 31841T had a cumulative size of 6.3 Mb and a G + C content of 62.64 mol%; strain LMG 32171T had a genome size of 5.8 Mb and a G + C content of 62.91 mol%. Hemolysis on horse blood agar, beta-galactosidase and phosphoamidase activity, and assimilation of adipic acid and trisodium citrate allowed phenotypic differentiation of strains LMG 31841T, LMG 32171T and P. sartisoli LMG 24000T. An analysis of the genomic potential for aromatic compound degradation yielded additional differences among strains representing these three species, but also highlighted some discrepancies between the presence of genes and pathways, and the phenotype revealed through growth experiments using a mineral salts medium supplemented with single aromatic compounds as carbon sources. We propose to classify all isolates from the present study into two novel Paraburkholderia species, for which we propose the names Paraburkholderia gardini with LMG 32171T (=CECT 30344T) as the type strain, and Paraburkholderia saeva with LMG 31841T (=CECT 30338T) as the type strain.  相似文献   

14.
Two red-pigmented isolates, with optimum growth temperatures between 45 and 50 °C, were recovered from a hot spring in the Furnas, Área da Fonte 1825 on the Island of São Miguel in the Azores. Phylogenetic analysis of the 16S rRNA gene sequences showed that these organisms represented a new species of the genus Meiothermus. These new isolates could be distinguished from other strains of the species of the genus Meiothermus primarily by the fatty acid composition and polar lipid pattern, since they did not possess 2-OH fatty acids or glycolipid variant GL-1a. Moreover, the two new isolates had the lowest growth temperature range of any of the known species of the genus Meiothermus. On the basis of the results presented here we propose the name Meiothermus granaticius for the new species represented by strains AF-68T (=DSM 23260T = LMG 25524T) and AF-49 (=DSM 23259 = LMG 25525).  相似文献   

15.
The phenotypic and genotypic characteristics of seventeen Achromobacter strains representing MLST genogroups 2, 5, 7 and 14 were examined. Although genogroup 2 and 14 strains shared a DNA–DNA hybridization level of about 70%, the type strains of both genogroups differed in numerous biochemical characteristics and all genogroup 2 and 14 strains could by distinguished by nitrite reduction, denitrification and growth on acetamide. Given the MLST sequence divergence which identified genogroups 2 and 14 as clearly distinct populations, the availability of nrdA sequence analysis as a single locus identification tool for all Achromobacter species and genogroups, and the differential phenotypic characteristics, we propose to formally classify Achromobacter genogroups 2, 5, 7 and 14 as four novel Achromobacter species for which we propose the names Achromobacter insuavis sp. nov. (with strain LMG 26845T [= CCUG 62426T] as the type strain), Achromobacter aegrifaciens sp. nov. (with strain LMG 26852T [= CCUG 62438T] as the type strain), Achromobacter anxifer sp. nov. (with strain LMG 26857T [= CCUG 62444T] as the type strain), and Achromobacter dolens sp. nov. (with strain LMG 26840T [= CCUG 62421T] as the type strain).  相似文献   

16.
17.
A taxonomic study was carried out on strains 22II1-22F38T and 22II-S13e, which were isolated from sea water and sediment from the Atlantic Ocean, respectively. The two strains were Gram-negative, oxidase and catalase positive, oval to pear shaped, and motile by a single polar flagellum. Phylogenetic analysis based on 16S rRNA gene sequences indicated that both strains belonged to the genus Hyphomonas, with highest sequence similarity (98.2%) to the type strains H. jannaschiana DSM 5153T and H. johnsonii ATCC 43964T. The genomic ANIm values and DNA-DNA hybridization estimate values between strain 22II1-22F38T and seven type strains ranged from 82.84% to 84.10% and from 18.0% to 19.1%, respectively. Isolate 22II1-22F38T had a G + C content of 58.3% and used Q-11 as the predominant respiratory quinone. The combined phenotypic and genotypic data showed that both strains represented a novel species of the genus Hyphomonas, for which the name Hyphomonas atlanticus sp. nov. is proposed, with the type strain being 22II1-22F38T (=LMG 27916T = MCCC 1A09418T). In addition, we conclude that Hyphomonas hirschiana is a later synonym of Hyphomonas neptunium.  相似文献   

18.
Two isolates, with an optimum growth temperature of about 35-37 °C and an optimum pH for growth between 6.5 and 7.5, were recovered from a deep mineral water aquifer in Portugal. Strains form rod-shaped cells and were non-motile. These strains were non-pigmented, strictly aerobic, catalase and oxidase positive. Strains F2-233T and F2-223 assimilated carbohydrates, organic acids and amino acids. Major fatty acids were novel iso internally branched such as 17:0 iso 10-methyl, 17:0 iso and 15:0 iso 8-methyl. The peptidoglycan contained meso-diaminopimelic acid and menaquinone MK-7 was the major respiratory quinone. Analysis of the 16S rRNA gene shows the strains to cluster with species of the genera Thermoleophilum, Patulibacter, Conexibacter and Solirubrobacter to which they have pairwise sequence similarity in the range 87-88%. Based on 16S rRNA gene sequence analysis, physiological and biochemical characteristics we describe a new species of a novel genus represented by strain F2-233T (=CECT 7815T = LMG 26412T) for which we propose the name Gaiella occulta gen. nov., sp. nov. We also propose that this organism represents a novel family named Gaiellaceae fam. nov. of a novel order named Gaiellales ord. nov.  相似文献   

19.
Five strains of gram negative bacteria, isolated from soybean (LPPA 221T, 222 and 223) and weeds (LPPA 816 and 1442), were analyzed by a polyphasic approach. The isolates showed variation in their phenotypic traits and were placed in the Pseudomonas fluorescens lineage, based on 16S rRNA gene sequence phylogeny, as a single but well separated cluster. MLSA analysis based on gyrB and rpoD sequences clustered the strains in a single branch in the Pseudomonas syringae group, and revealed P. viridiflava as closest relative. DNA–DNA hybridizations showed medium levels of DNA–DNA relatedness with the type strain of P. viridiflava (50%) and lower levels (<32%) with other type strains of the P. syringae group, supporting classification within a novel species of the genus Pseudomonas. The strains can be distinguished from species of the P. syringae group by the fatty acid C17:0 cyclo that is present in a low amount (2.5%) and from P. viridiflava by their inability to assimilate d-tartrate and d-sorbitol, and by the formation of red colonies on TTC medium. For this new species, the name Pseudomonas asturiensis sp. nov. is proposed. The type strain is LPPA 221T (=LMG 26898T = CECT 8095T).  相似文献   

20.
Ten Gram-negative, rod-shaped and motile bacterial strains were isolated from spider crab (M27.10, M27.11a, F36.1, F36.4, M56.1, F76.17b, M146.1, M166.3 and M166.6) and pullet carpet shell clam (SBRF 1.10) collected in the coast of Galicia. Analyses of the 16S rRNA genes showed that the strains belong to the genus Kiloniella and have high similarity with the species Kiloniella spongiae (99.44–99.86%) and Kiloniella litopenaei (99.0–99.5%). Strains M56.1T (=CECT 9195, =LMG 29925), M146.1 (=CECT 9193, =LMG 29926) and SBRF 1.10 (=CECT 9194, =LMG 29927) were selected on the basis of genotyping by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). Phylogenetic analysis based on concatenated sequences of the genes gyrB, ftsZ, rpoD and mreB showed that the isolates form a differentiated branch within the genus Kiloniella. Moreover, the average nucleotide identity (ANIm, ANIb and OrthoANI) and in silico estimated DNA–DNA reassociation values between selected Galician isolates and Kiloniella species were below the established cut-off for species deliniation. The results obtained in the genetic and phenotypical analyses indicate that the isolates represent a new species of the genus Kiloniella, for which the name Kiloniella majae sp. nov. is proposed with strain M56.1T (=CECT 9195T, =LMG 29925T) as the type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号