首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A group of four motile facultative anaerobic marine isolates (Rd 8.15T [=CECT 7224T, =LMG 23850T], Rd 16.13, Rd 6.8 [=LMG 25696] and Rd2L5) were obtained from cultured clams (Ruditapes philippinarum and Venerupis pullastra) in Galicia, north-western Spain. They formed a tight phylogenetic group based on sequences of the 16S rRNA gene and the four housekeeping genes rpoA (encoding the α-chain of RNA polymerase), rpoD (encoding the sigma factor of RNA polymerase), recA (encoding RecA protein), and atpA (encoding the α-subunit of bacterial ATP synthase). The phylogenies based on these sequences indicated that the four isolates represented a novel species in the genus Vibrio, and more precisely in the Splendidus clade. DNA–DNA hybridizations with the type strains of species showing more than 98.6% 16S rRNA gene sequence similarity, revealed a DNA–DNA relatedness below 70%. The isolates could be differentiated from the phylogenetically related Vibrio species on the basis of several phenotypic features. In addition, strain Rd 8.15T showed potential pathogenic activity for adult clams in virulence assays. The name Vibrio celticus sp. nov. is proposed for this new taxon, with the type strain being Rd 8.15T (=CECT 7224T, =LMG 23850T).  相似文献   

2.
A group of three motile facultative anaerobic marine bacteria were isolated from cultured Manila clams (Ruditapes philippinarum) in Galicia, north-western Spain. The strains were characterized phenotypically and genotypically. Phylogenetic analysis of the 16S rRNA gene and four housekeeping genes, RNA polymerase α-chain (rpoA), RecA protein (recA), the α-subunit of bacterial ATP synthase (atpA) and the uridine monophosphate (UMP) kinase (pyrH), indicated that these strains were closely related to the Vibrio splendidus clade. The amplified fragment length polymorphism (AFLP) fingerprints, DNA–DNA hybridizations and phylogenies of the housekeeping and 16S rRNA gene sequences showed that the three strains represented a different species from all currently described vibrios. The new species could be differentiated from its nearest neighbours on the basis of several phenotypic features. The three strains are therefore a novel species within the genus Vibrio, for which the name Vibrio gallaecicus is proposed, with the type strain being VB 8.9T(=CECT 7244T=LMG 24045T).  相似文献   

3.
Four isolates of Gram-negative facultatively anaerobic bacteria, three of them producing NDM-1 carbapenemase, were isolated from hospitalized patients and outpatients attending two military hospitals in Rawalpindi, Pakistan, and studied for their taxonomic position. Initially the strains were phenotypically identified as Citrobacter species. Comparative analysis of 16S rRNA gene sequences then showed that the four strains shared >97%, but in no case >98.3%, 16S rRNA gene sequence similarities to members of the genera Citrobacter, Kluyvera, Pantoea, Enterobacter and Raoultella, but always formed a separate cluster in respective phylogenetic trees. Based on multilocus sequence analysis (MLSA) including partial recN, rpoA, thdF and rpoB gene sequence and respective amino acid sequence analysis it turned out that the strains also here always formed separate clusters. Based on further comparative analyses including DNA–DNA hybridizations, genomic fingerprint analysis using rep- and RAPD-PCRs and physiological tests, it is proposed to classify these four strains into the novel genus Pseudocitrobacter gen. nov. with a new species Pseudocitrobacter faecalis sp. nov. with strain 25 CITT (= CCM 8479T = LMG 27751T) and Pseudocitrobacter anthropi sp. nov. with strain C138T (= CCM 8478T = LMG 27750T), as the type strains, respectively.  相似文献   

4.
A new ethylenediaminetetraacetic acid (EDTA)-utilizing gammaproteobacterial strain LPM-5T was isolated from municipal sewage sludge. Aerobic, gram-negative, motile rods multiply by binary fission. Neutrophilic and mesophilic, these are unable to grow in the presence of 3% NaCl (w/v), and unable to reduce nitrate to nitrite, and are oxidase and catalase positive, but lipase negative. The major cellular fatty acids are Ci15:0, Ca15:0 and C16:1w7c. The dominant phospholipids are phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol (cardiolipin). The DNA G+C content is 68.3 mol% (Tm). The 16S rRNA gene sequence analysis showed a high similarity of strain LPM-5T to the species members of genus Stenotrophomonas: S. maltophilia LMG 958T (98.6%), S. rhizophila CCUG 47042T (98.3%), S. koreensis TR6-01T (97.6%) and S. acidaminiphila CIP 106456T (97.0%). Based on these results and modest DNA–DNA hybridization levels with S. maltophilia VKM B-591T (=LMG 958T) (51%) and S. rhizophila CCUG 47042T (52%), the isolate was classified as a novel species, Stenotrophomonas chelatiphaga sp. nov. (type strain LPM-5T=VKM B-2486=DSM-21508=CCUG 57178).  相似文献   

5.
Four red-pigmented isolates, with optimum growth temperatures of approximately 55–60 °C and an optimum pH for growth between 7.5 and 8.5, were recovered from hot springs in Central France. Phylogenetic analysis of the 16S rRNA gene sequences showed that these organisms represented a new species of the genus Meiothermus. The new isolates could be distinguished from other strains of the species of the genus Meiothermus primarily by the glycolipid profile and fatty acid composition because these organisms lacked the hydroxy fatty acids and the glycolipid variant GL-1a found in all other isolates of the species of Meiothermus examined. On the basis of the results presented here we propose the name Meiothermus rufus for the new species, which is represented by strains CAL-4T (=DSM 22234T=LMG 24878T) and CAL-12 (=DSM 22235=LMG 24879). We also propose emending the genus Meiothermus to include strains that have only one glycolipid instead of two glycolipid variants.  相似文献   

6.
Two extremely halophilic archaeal strains GX3(T) and GX26(T) were isolated from the Gangxi marine solar saltern near the Weihai city of Shandong Province, China. Cells from the two strains were pleomorphic and stained Gram-negative, colonies were red-pigmented. Strains GX3(T) and GX26(T) were able to grow at 25-50 °C (optimum 37 °C), at 1.4-5.1M NaCl (optimum 3.1M), at pH 5.5-9.5 (optimum pH 7.0) and neither strain required Mg(2+) for growth. Cells lyse in distilled water and the minimal NaCl concentration to prevent cell-lysis was 8% (w/v). The major polar lipids of the two strains were PA (phosphatidic acid), PG (phosphatidylglycerol), PGP-Me (phosphatidylglycerol phosphate methyl ester) and three major glycolipids (GL1, GL2 & GL3) chromatographically identical to S-TGD-1 (sulfated galactosyl mannosy glucosyl diether), S-DGD-1 (sulfated mannosyl glucosyl diether), and DGD-1 (mannosyl glucosyl diether) respectively, an unidentified lipid (GL4) was also detected in strain GX26(T). Phylogenetic analysis based on 16S rRNA gene revealed that strain GX3(T) and strain GX26(T) formed a distinct clade with the closest relative, Haladaptatus paucihalophilus (89.9-92.4% and 90.4-92.7, respectively). The rpoB' gene similarities between strains GX3(T) and GX26(T), and between the two strains and the closest relative, Halorussus rarus TBN4(T) are 96.5%, 84.3% and 83.9%, respectively. The DNA G+C contents of strain GX3(T) and strain GX26(T) are 67.3 mol% and 67.2 mol%, respectively. The DNA-DNA hybridization value between strain GX3(T) and strain GX26(T) was 44%. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain GX3(T) and strain GX26(T) represent two novel species in a new genus within the family Halobacteriaceae, Halorubellus salinus gen. nov., sp. nov. (type strain GX3(T)=CGMCC 1.10384(T)=JCM 17115(T)) and Halorubellus litoreus sp. nov. (type strain GX26(T)=CGMCC 1.10386(T)=JCM 17117(T)).  相似文献   

7.
Two red-pigmented isolates, with optimum growth temperatures between 45 and 50 °C, were recovered from a hot spring in the Furnas, Área da Fonte 1825 on the Island of São Miguel in the Azores. Phylogenetic analysis of the 16S rRNA gene sequences showed that these organisms represented a new species of the genus Meiothermus. These new isolates could be distinguished from other strains of the species of the genus Meiothermus primarily by the fatty acid composition and polar lipid pattern, since they did not possess 2-OH fatty acids or glycolipid variant GL-1a. Moreover, the two new isolates had the lowest growth temperature range of any of the known species of the genus Meiothermus. On the basis of the results presented here we propose the name Meiothermus granaticius for the new species represented by strains AF-68T (=DSM 23260T = LMG 25524T) and AF-49 (=DSM 23259 = LMG 25525).  相似文献   

8.
Two actinomycete strains isolated from sputum between 1999 and 2001 in Japan were provisionally assigned to the genus Nocardia based on morphological criteria. These isolates were further studied in order to determine their specific taxonomic status. Detailed chemotaxonomic characterization and 16S rDNA gene sequence analysis of these isolates also confirmed that they belong to the genus Nocardia. The 16S rDNA sequence data of the two strains showed that they are most similar to that of Nocardia carnea and Nocardia flavorosea. However, DNA-DNA relatedness data showed that the two strains could be distinguished from N. carnea and N. flavorosea and therefore represented two new species within the genus Nocardia. The designation of the two isolated strains are Nocardia testaceus for IFM 0937(T) (=JCM 12235(T), DSM 44765(T)) and Nocardia senatus for IFM 10088(T) (=JCM 12236(T), DSM 44766(T)).  相似文献   

9.
Five strains (JA325, JA389, JA473, JA563 and JA582) of Gram stain-negative, vibrioid to spiral shaped, phototrophic purple bacteria were isolated from solar salterns of India. All strains contained bacteriochlorophyll-a and carotenoids of the spirilloxanthin series as photosynthetic pigments. C18:1ω7c, C18:1ω7c 11-methyl and C16:0 were the major fatty acids of all strains. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), ornithine lipid (OL), an unidentified phospholipid (PL), and an unidentified aminolipid (AL) were the major polar lipids of all the strains. According to 16S rRNA gene sequences, all strains clustered phylogenetically with the only species of the genus Rhodothalassium (99.8–99.3% sequence similarity) but only strains JA325 and JA563 were distinctly related (60 + 1.5% DNA–DNA hybridization [DDH]) to the type strain Rhodothalassium salexigens DSM 2132T. However, the genotypic data of strains JA325 and JA563 was not supported because of a large number of phenotypic differences compared to the type strain, therefore, it is proposed that all five newly isolated strains were R. salexigens-like strains. In addition, phylogenetically, the Rhodothalassium clade represented a distinct lineage and formed a deep branch with less than 90% 16S rRNA gene sequence similarity to other orders of the Alphaproteobacteria, and characteristic phenotypic properties also distinguished these bacteria from other purple non-sulfur bacteria. Therefore, the novel family Rhodothalassiaceae fam. nov. and the novel order Rhodothalassiales ord. nov. are proposed for the distinct phyletic line represented by the genus Rhodothalassium.  相似文献   

10.
In a survey of rhizobia associated with the native legumes in Yunnan Province, China, seven and nine strains isolated from the root nodules of Psoralea corylifolia, Sesbania cannabina and Medicago lupulina were respectively classified into the novel genomic species groups I and II in the genus Ensifer (former Sinorhizobium) based on the sequence analyses of the 16S rRNA gene. Analyses of concatenated housekeeping genes (atpD, recA and glnII) further revealed that they were distinct lineages in the genus, and group I was most similar to Ensifer terangae and Ensifer garamanticus (both with 94.2% similarity), while group II was most similar to Ensifer adhaerens (94.0%). These groups could be distinguished from closely related species by DNA–DNA relatedness, MALID-TOF MS, cellular fatty acid profiles and a series of phenotypic characters. Therefore, two novel species were proposed: Ensifer psoraleae sp. nov. (seven strains, type strain CCBAU 65732T = LMG 26835T = HAMBI 3286T) and Ensifer sesbaniae sp. nov. (nine strains, type strain CCBAU 65729T = LMG 26833T = HAMBI 3287T). They had a DNA G + C mol% (Tm) of 58.9 and 60.4, respectively. Both of the type strains formed effective nodules on common bean (Phaseolus vulgaris) and their hosts of origin. In addition, the previously described species Sinorhizobium morelense and Sinorhizobium americanum were renamed as Ensifer morelense comb. nov. and Ensifer americanum comb. nov. according to the accumulated data from different studies.  相似文献   

11.
12.
13.
Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529T and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Tr?ek and Teuber [34] revealed the same but unique restriction profiles for LMG 1529T and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA–DNA hybridizations confirmed their novel species identity by 73% DNA–DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529T and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529T and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529T and SKU 1109 is C18:1ω7c (60.2–64.8%). The DNA G + C content of LMG 1529T and SKU 1109 is 62.5 and 63.3 mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529T (= NBRC 14815T = NCIMB 8752T).  相似文献   

14.
Phenotypic and genetic studies were performed on some atypical aeromonas strains of uncertain taxonomic position. 16S rRNA gene sequence analysis revealed that these strains represent a hitherto unknown genetic line within the genus Aeromonas, for which the name Aeromonas allosaccharophila sp. nov. is proposed. The type strain is CECT 4199.  相似文献   

15.
A novel actinobacterium, designated strain MSW-19T, was isolated from a seawater sample in Republic of Korea. Cells were aerobic, Gram-positive, non-endospore-forming, and non-motile cocci. Colonies were circular, convex, opaque, and vivid yellow in colour. A phylogenetic tree based on 16S rRNA gene sequences exhibited that the organism formed a distinct clade within the radius encompassing representatives of the family Propionibacteriaceae. The phylogenetic neighbors were the type strains of the genera Friedmanniella, Microlunatus, Micropruina, Propionicicella, and Propionicimonas. Levels of 16S rRNA gene sequence similarity between the isolate and members of the family were less than 95.3%. The cell wall peptidoglycan of the organism contained LL-diaminopimelic acid as the diagnostic diamino acid. The isolate contained MK-9(H4) as the predominant menaquinone, ai-C15:0 as the major fatty acid and polar lipids including phosphatidylglycerol, phosphatidylethanolamine, and an unknown phospholipid. The G+C content of the DNA was 69.6 mol%. On the basis of the phenotypic and phylogenetic data presented here, the isolate is considered to represent a novel genus and species in the family Propionibacteriaceae, for which the name Ponticoccus gilvus gen. nov., sp. nov. is proposed. The type strain is strain MSW-19T (= KCTC 19476T= DSM 21351T).  相似文献   

16.
Two motile actinomycete strains, K95–5561T and K95–5562, were isolated from a soil sample collected at Sayama City, Saitama Prefecture, Japan. They produced bell shaped spore vesicles (sporangia) with hairy surfaces on substrate hyphae. When released into water, the sporangiospores became motile by a tuft of polar flagella. The chemotaxonomic and morphological characteristics together with 16S rRNA gene sequence data indicated that the two isolates belonged to the genus Actinoplanes. The two strains were assigned to a single species on the basis of phenotypic, notably cultural, morphological and physiological characteristics, and DNA-DNA pairing data. The two strains were distinguished from representatives of all validly described species of Actinoplanes using a combination of genotypic and phenotypic properties. It is, therefore, proposed that strains K95–5561 and K95–5562 be recognized as a new species of the genus Actinoplanes with the name Actinoplanes capillaceus sp. nov. The type strain of the species is strain K95–5561T (=JCM 10268T =IFO 16408T). The invalidly proposed species `Ampullariella cylindrica', `Ampullariella pekinensis' and `Ampullariella pilifera' were assigned to Actinoplanes capillaceus on the basis of genotypic and phenotypic data.  相似文献   

17.
An actinobacterial strain YIM 80766T was isolated from a soil sample collected from the eastern desert of Egypt, and its taxonomic position was investigated by a polyphasic approach. The organism was found to have a range of chemical and morphological properties consistent with its classification in the genus Dietzia. Phylogenetic analysis indicated that the levels of 16S rRNA gene sequence similarity between strain YIM 80766T and the other type strains of recognized members of the genus Dietzia were 97.0–98.9%. However, DNA–DNA hybridization values and phenotypic characteristics revealed that the strain differed from the currently recognized species of the genus Dietzia. Therefore, strain YIM 80766T represents a novel species of the genus Dietzia, for which the name Dietzia lutea sp. nov. is proposed. The type strain is YIM 80766T (=KCTC 19232T=DSM 45074T=CCTCC AA 207008T). The 16S rRNA gene sequence of strain YIM 80766T has been deposited in GenBank under the accession number EU821598.  相似文献   

18.
Five isolates from marine fish (W3T, WM, W1S, S2 and S3) and three isolates misclassified as Photobacterium phosphoreum, originating from spoiled modified atmosphere packed stored cod (NCIMB 13482 and NCIMB 13483) and the intestine of skate (NCIMB 192), were subjected to a polyphasic taxonomic study. Phylogenetic analysis of 16S rRNA gene sequences showed that the isolates were members of the genus Photobacterium. Sequence analysis using the gapA, gyrB, pyrH, recA and rpoA loci showed that these isolates formed a distinct branch in the genus Photobacterium, and were most closely related to Photobacterium aquimaris, Photobacterium kishitanii, Photobacterium phosphoreum and Photobacterium iliopiscarium. The luxA gene was present in isolates W3T, WM, W1S, S2 and S3 but not in NCIMB 13482, NCIMB 13483 and NCIMB 192. AFLP and (GTG)5-PCR fingerprinting indicated that the eight isolates represented at least five distinct genotypes. DNA–DNA hybridizations revealed 89% relatedness between isolate W3T and NCIMB 192, and values below 70% with the type strains of the phylogenetically closest species, P. iliopiscarium LMG 19543T, P. kishitanii LMG 23890T, P. aquimaris LMG 26951T and P. phosphoreum LMG4233T. The strains of this new taxon could also be distinguished from the latter species by phenotypic characteristics. Therefore, we propose to classify this new taxon as Photobacterium piscicola sp. nov., with W3T (=NCCB 100098T = LMG 27681T) as the type strain.  相似文献   

19.
In a taxonomic study on the ascomycetous yeasts isolated from plant materials collected in tropical forests in Yunnan and Hainan Provinces, southern China, four strains isolated from tree sap (YJ2E(T)) and flowers (YF9E(T), YWZH3C(T) and YYF2A(T)) were revealed to represent four undescribed yeast species. Molecular phylogenetic analysis based on the large subunit (26S) rRNA gene D1/D2 domain sequences showed that strain YJ2E(T) was located in a clade together with Candida haemulonii and C. pseudohaemulonii. Strain YF9E(T) was most closely related to C. azyma and strain YWZH3C(T) to C. sorbophila and C. spandovensis. Strain YYF2A(T) was clustered in a clade containing small-spored Metschnikowia species and related anamorphic Candida species. The new strains differed from their closely related described species by more than 10% mismatches in the D1/D2 domain. No sexual states were observed for the four strains on various sporulation media. The new species are therefore assigned to the genus Candida and described as Candida alocasiicola sp. nov. (type strain, YF9E(T) = AS 2.3484(T) = CBS 10702(T)), Candida hainanensis sp. nov. (type strain, YYF2A(T) = AS 2.3478(T) = CBS 10696(T)), Candida heveicola sp. nov. (type strain, YJ2E(T) = AS 2.3483(T) = CBS 10701(T)) and Candida musiphila sp. nov. (type strain, YWZH3C(T) = AS 2.3479(T) = CBS 10697(T)).  相似文献   

20.
Two newly isolated halotolerant obligately methylotrophic bacteria (strains C2T and SK12T) with the serine pathway of C1 assimilation are described. The isolates are strictly aerobic, Gram negative, asporogenous, non-motile rods, forming rosettes, multiplying by binary fission. Mesophilic and neutrophilic, accumulate intracellularly compatible solute ectoine and poly-β-hydroxybutyrate. The novel strains are able to grow at 0 up to 16% NaCl (w/v), optimally at 3–5% NaCl. The major cellular fatty acids are C18:1ω7c and C19:0cyc and the prevailing quinone is Q-10. The predominant phospholipids are phosphatidylcholine, phosphatidylglycerol, phosphatidyldimethylethanolamine and phosphatidylethanolamine. Assimilate NH4+ by glutamate dehydrogenase and via the glutamate cycle (glutamine synthetase and glutamate synthase). The DNA G + C contents of strains C2T and SK12T are 60.9 and 60.5 mol% (Tm), respectively. 16S rRNA gene sequence similarity between the two new isolates are 99% but below 94% with other members of the Alphaproteobacteria thus indicating that they can be assigned to a novel genus Methyloligella. Rather low level of DNA–DNA relatedness (53%) between the strains C2T and SK12T indicates that they represent two separate species of the new genus, for which the names Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov. are proposed. The type strain of Methyloligella halotolerans is C2T (=VKM B-2706T = CCUG 61687T = DSM 25045T) and the type strain of Methyloligella solikamskensis is SK12T (=VKM B-2707T = CCUG 61697T = DSM 25212T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号