首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary goal of this study was to better understand the microbial composition and functional genetic diversity associated with turkey fecal communities. To achieve this, 16S rRNA gene and metagenomic clone libraries were sequenced from turkey fecal samples. The analysis of 382 16S rRNA gene sequences showed that the most abundant bacteria were closely related to Lactobacillales (47%), Bacillales (31%), and Clostridiales (11%). Actinomycetales, Enterobacteriales, and Bacteroidales sequences were also identified, but represented a smaller part of the community. The analysis of 379 metagenomic sequences showed that most clones were similar to bacterial protein sequences (58%). Bacteriophage (10%) and avian viruses (3%) sequences were also represented. Of all metagenomic clones potentially encoding for bacterial proteins, most were similar to low G+C Gram-positive bacterial proteins, particularly from Lactobacillales (50%), Bacillales (11%), and Clostridiales (8%). Bioinformatic analyses suggested the presence of genes encoding for membrane proteins, lipoproteins, hydrolases, and functional genes associated with the metabolism of nitrogen and sulfur containing compounds. The results from this study further confirmed the predominance of Firmicutes in the avian gut and highlight the value of coupling 16S rRNA gene and metagenomic sequencing data analysis to study the microbial composition of avian fecal microbial communities.  相似文献   

2.
Algal blooms produce large quantities of organic matter that is subsequently remineralised by bacterial heterotrophs. Polysaccharide is a primary component of algal biomass. It has been hypothesised that individual bacterial heterotrophic niches during algal blooms are in part determined by the available polysaccharide substrates present. Measurement of the expression of TonB-dependent transporters, often specific for polysaccharide uptake, might serve as a proxy for assessing bacterial polysaccharide consumption over time. To investigate this, we present here high-resolution metaproteomic and metagenomic datasets from bacterioplankton of the 2016 spring phytoplankton bloom at Helgoland island in the southern North Sea, and expression profiles of TonB-dependent transporters during the bloom, which demonstrate the importance of both the Gammaproteobacteria and the Bacteroidetes as degraders of algal polysaccharide. TonB-dependent transporters were the most highly expressed protein class, split approximately evenly between the Gammaproteobacteria and Bacteroidetes, and totalling on average 16.7% of all detected proteins during the bloom. About 93% of these were predicted to take up organic matter, and for about 12% of the TonB-dependent transporters, we predicted a specific target polysaccharide class. Most significantly, we observed a change in substrate specificities of the expressed transporters over time, which was not reflected in the corresponding metagenomic data. From this, we conclude that algal cell wall-related compounds containing fucose, mannose, and xylose were mostly utilised in later bloom stages, whereas glucose-based algal and bacterial storage molecules including laminarin, glycogen, and starch were used throughout. Quantification of transporters could therefore be key for understanding marine carbon cycling.Subject terms: Water microbiology, Molecular ecology, Proteomics  相似文献   

3.
Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host-specific markers. Here we describe the application of a genome fragment enrichment (GFE) method to identify host-specific genetic markers from fecal microbial community DNA. As a proof of concept, bovine fecal DNA was challenged against a porcine fecal DNA background to select for bovine-specific DNA sequences. Bioinformatic analyses of 380 bovine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode membrane-associated and secreted proteins. Oligonucleotide primers capable of annealing to select Bacteroidales-like bovine GFE sequences exhibited extremely high specificity (>99%) in PCR assays with total fecal DNAs from 279 different animal sources. These primers also demonstrated a broad distribution of corresponding genetic markers (81% positive) among 148 different bovine sources. These data demonstrate that direct metagenomic DNA analysis by the competitive solution hybridization approach described is an efficient method for identifying potentially useful fecal genetic markers and for characterizing differences between environmental microbial communities.  相似文献   

4.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

5.

Background

Natural microbial communities are extremely complex and dynamic systems in terms of their population structure and functions. However, little is known about the in situ functions of the microbial communities.

Results

This study describes the application of proteomic approaches (metaproteomics) to observe expressed protein profiles of natural microbial communities (metaproteomes). The technique was validated using a constructed community and subsequently used to analyze Chesapeake Bay microbial community (0.2 to 3.0 μm) metaproteomes. Chesapeake Bay metaproteomes contained proteins from pI 4–8 with apparent molecular masses between 10–80 kDa. Replicated middle Bay metaproteomes shared ~92% of all detected spots, but only shared 30% and 70% of common protein spots with upper and lower Bay metaproteomes. MALDI-TOF analysis of highly expressed proteins produced no significant matches to known proteins. Three Chesapeake Bay proteins were tentatively identified by LC-MS/MS sequencing coupled with MS-BLAST searching. The proteins identified were of marine microbial origin and correlated with abundant Chesapeake Bay microbial lineages, Bacteroides and α-proteobacteria.

Conclusion

Our results represent the first metaproteomic study of aquatic microbial assemblages and demonstrate the potential of metaproteomic approaches to link metagenomic data, taxonomic diversity, functional diversity and biological processes in natural environments.  相似文献   

6.
Host-microbiome interactions and the microbial community have broad impact in human health and diseases. Most microbiome based studies are performed at the genome level based on next-generation sequencing techniques, but metaproteomics is emerging as a powerful technique to study microbiome functional activity by characterizing the complex and dynamic composition of microbial proteins. We conducted a large-scale survey of human gut microbiome metaproteomic data to identify generalist species that are ubiquitously expressed across all samples and specialists that are highly expressed in a small subset of samples associated with a certain phenotype. We were able to utilize the metaproteomic mass spectrometry data to reveal the protein landscapes of these species, which enables the characterization of the expression levels of proteins of different functions and underlying regulatory mechanisms, such as operons. Finally, we were able to recover a large number of open reading frames (ORFs) with spectral support, which were missed by de novo protein-coding gene predictors. We showed that a majority of the rescued ORFs overlapped with de novo predicted protein-coding genes, but on opposite strands or in different frames. Together, these demonstrate applications of metaproteomics for the characterization of important gut bacterial species.  相似文献   

7.
Metagenomic and metaproteomic analyses were utilized to determine the composition and function of complex air–water interface biofilms sampled from the hulls of two US Navy destroyers. Prokaryotic community analyses using PhyloChip-based 16S rDNA profiling revealed two significantly different and taxonomically rich biofilm communities (6,942 taxa) in which the majority of unique taxa were ascribed to members of the Gammaproteobacteria, Alphaproteobacteria and Clostridia. Although metagenomic sequencing indicated that both biofilms were dominated by prokaryotic sequence reads (> 91%) with the majority of the bacterial reads belonging to the Alphaproteobacteria, the Ship-1 metagenome harbored greater organismal and functional diversity and was comparatively enriched for sequences from Cyanobacteria, Bacteroidetes and macroscopic eukaryotes, whereas the Ship-2 metagenome was enriched for sequences from Proteobacteria and microscopic photosynthetic eukaryotes. Qualitative liquid chromatography-tandem mass spectrometry metaproteome analyses identified 678 unique proteins, revealed little overlap in species and protein composition between the ships and contrasted with the metagenomic data in that ~80% of classified and annotated proteins were of eukaryotic origin and dominated by members of the Bacillariophyta, Cnidaria, Chordata and Arthropoda (data deposited to the ProteomeXchange, identifier PXD000961). Within the shared metaproteome, quantitative 18O and iTRAQ analyses demonstrated a significantly greater abundance of structural proteins from macroscopic eukaryotes on Ship-1 and diatom photosynthesis proteins on Ship-2. Photosynthetic pigment composition and elemental analyses confirmed that both biofilms were dominated by phototrophic processes. These data begin to provide a better understanding of the complex organismal and biomolecular composition of marine biofilms while highlighting caveats in the interpretation of stand-alone environmental ‘-omics’ datasets.  相似文献   

8.
Sponges harbour complex communities of diverse microorganisms, which have been postulated to form intimate symbiotic relationships with their host. Here we unravel some of these interactions by characterising the functional features of the microbial community of the sponge Cymbastela concentrica through a combined metagenomic and metaproteomic approach. We discover the expression of specific transport functions for typical sponge metabolites (for example, halogenated aromatics, dipeptides), which indicates metabolic interactions between the community and the host. We also uncover the simultaneous performance of aerobic nitrification and anaerobic denitrification, which would aid to remove ammonium secreted by the sponge. Our analysis also highlights the requirement for the microbial community to respond to variable environmental conditions and hence express an array of stress protection proteins. Molecular interactions between symbionts and their host might also be mediated by a set of expressed eukaryotic-like proteins and cell–cell mediators. Finally, some sponge-associated bacteria (for example, a Phyllobacteriaceae phylotype) appear to undergo an evolutionary adaptation process to the sponge environment as evidenced by active mobile genetic elements. Our data clearly show that a combined metaproteogenomic approach can provide novel information on the activities, physiology and interactions of sponge-associated microbial communities.  相似文献   

9.
Industrial bagasse collection sites at sugar mills are an important resource for biomass-based industries and represent a unique ecological niche in lignocellulose degradation. In this study, microbial community structures at regions with varying microenvironmental conditions contained within a bagasse collection site were explored using tagged 16S rRNA gene pyrosequencing. Overall, remarkable differences in microbial community structures were found in aerobic surface and oxygen-limited interior regions of the pile. A variety of Alphaproteobacteria and Gammaproteobacteria represented the majority of bacteria in the aerobic upper-pile regions with the predominance of acetic acid bacteria towards the outer surface. Diverse Proteobacteria, Bacteroidetes, and Acidobacteria represented the predominant phyla at the exterior soil-contact pile base with an increasing abundance of anaerobic Spirochaetes with the increasing depth, where it shared similar community structures to that in the open-field soil from decomposed bagasse. Using complementary shotgun pyrosequencing, a variety of genes encoding various glycosyl hydrolases targeting cellulose and hemicellulose degradation were identified in the oxygen-limited interior pile base. Most were relevant to orders Clostridiales, Bacteroidales, Sphingobacteriales, and Cytophagales, suggesting their role in lignocellulose degradation in this region, as evidenced by the decrease in cellulose and respective increase in lignin fractions of the biomass. Partial carbon flux in the anoxic region was metabolized through mixed methanogenesis pathways as suggested by the annotated functional genes in methane synthesis. This study gives insights into native microbial community structures and functions in this unique lignocellulose degrading environment and provides the basis for controlling microbial processes important for utilization of bagasse in bio-industries.  相似文献   

10.
11.
Stimulation of subsurface microorganisms to induce reductive immobilization of metals is a promising approach for bioremediation, yet the overall microbial community response is typically poorly understood. Here we used proteogenomics to test the hypothesis that excess input of acetate activates complex community functioning and syntrophic interactions among autotrophs and heterotrophs. A flow-through sediment column was incubated in a groundwater well of an acetate-amended aquifer and recovered during microbial sulfate reduction. De novo reconstruction of community sequences yielded near-complete genomes of Desulfobacter (Deltaproteobacteria), Sulfurovum- and Sulfurimonas-like Epsilonproteobacteria and Bacteroidetes. Partial genomes were obtained for Clostridiales (Firmicutes) and Desulfuromonadales-like Deltaproteobacteria. The majority of proteins identified by mass spectrometry corresponded to Desulfobacter-like species, and demonstrate the role of this organism in sulfate reduction (Dsr and APS), nitrogen fixation and acetate oxidation to CO2 during amendment. Results indicate less abundant Desulfuromonadales, and possibly Bacteroidetes, also actively contributed to CO2 production via the tricarboxylic acid (TCA) cycle. Proteomic data indicate that sulfide was partially re-oxidized by Epsilonproteobacteria through nitrate-dependent sulfide oxidation (using Nap, Nir, Nos, SQR and Sox), with CO2 fixed using the reverse TCA cycle. We infer that high acetate concentrations, aimed at stimulating anaerobic heterotrophy, led to the co-enrichment of, and carbon fixation in Epsilonproteobacteria. Results give an insight into ecosystem behavior following addition of simple organic carbon to the subsurface, and demonstrate a range of biological processes and community interactions were stimulated.  相似文献   

12.
Clone library of bacterial 16S rRNA gene was constructed to evaluate the bacterial diversity and community structure of uterus samples obtained from three postpartum healthy cows and three metritic cows on days 10 and 40. Sequences were assigned to five major groups (Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, and Tenericutes) and to an uncultured group. On day 10, Bacteroidetes, Firmicutes, and Fusobacteria were the dominant group both in healthy and metritic cows. On day 40, the major sequences were affiliated with Bacteroidetes, Firmicutes, Tenericutes, and Proteobacteria. Tenericutes (Ureaplasma diversum) were revealed only from healthy cows, while Proteobacteria (Histophilus somni) were found only from metritic cows. Quantitative PCR revealed that metritic cows on day 10 showed higher value of total bacteria, Bacteroidetes, Peptostreptococcus, and Fusobacterium compared with healthy cows, while only a higher value of Fusobacterium spp. was observed from the metritic cows on day 40 compared with that from healthy cows (P?<?0.05). Our data indicates that great difference in the uterine bacterial community in both phyla level and species level exists between healthy and metritic postpartum cows, and dynamic changes in bacterial community occur over time.  相似文献   

13.
Extraintestinal growth of fecal bacteria can impair accurate assessment of watershed health. Anaerobic fecal bacteria belonging to the order Bacteroidales are attractive candidates for fecal source tracking because they have host-specific distributions and do not grow well in the presence of high oxygen concentrations. Growth of general and human-specific fecal Bacteroidales marker organisms in environmental samples (sewage) and persistence of the corresponding genetic markers were investigated using bromodeoxyuridine (BrdU) DNA labeling and immunocapture, followed by PCR detection. Background amplification of unlabeled controls occasionally occurred when a high number of PCR cycles was used. By using fluorescent detection of PCR products obtained after 15 cycles, which was determined to be quantitative, we enriched for BrdU-labeled DNA and did not detect unlabeled DNA. By using pure cultures of Bacteroides vulgatus, the ability of Bacteroidales bacteria to take up and incorporate BrdU into nascent DNA was confirmed. Fecal Bacteroidales organisms took up and incorporated BrdU into DNA during growth. In sewage incubated aerobically at the in situ temperature, Bacteroidales genetic marker sequences persisted for at least 24 h and Bacteroidales fecal bacteria grew for up to 24 h as well. Detection by PCR using a low, quantitative cycle number decreased the sensitivity of the assay such that we were unable to detect fecal Bacteroidales human-specific marker sequences in unlabeled or BrdU-labeled fractions, even when fluorescent detection was used. Using 30 PCR cycles with unlabeled fractions, human-specific Bacteroidales sequences were detected, and they persisted for up to 24 h in sewage. These data support the utility of BrdU labeling and immunocapture followed by length heterogeneity PCR or fluorescent detection using low numbers of PCR cycles. However, this method may not be sensitive enough to identify cells that are present at low densities in aquatic environments.  相似文献   

14.
Intestinal microflora influences many essential metabolic functions, and is receiving increasing attention from the scientific community. However, information on intestinal microbiota, especially for large wild carnivores, is insufficient. In the present study, the bacterial community in the feces of snow leopards (Uncia uncia) was described based on 16S rRNA gene sequence analysis. A total of 339 near-full-length 16S rRNA gene sequences representing 46 non-redundant bacterial phylotypes (operational taxonomical units, OTUs) were identified in fecal samples from four healthy snow leopards. Four different bacterial phyla were identified: Firmicutes (56.5 %), Actinobacteria (17.5 %), Bacteroidetes (13 %), and Proteobacteria (13 %). The phylum Actinobacteria was the most abundant lineage, with 40.4 % of all identified clones, but Clostridiales, with 50 % of all OTUs, was the most diverse bacterial order. The order Clostridiales was affiliated with four families: Clostridiaceae I, Lachnospiraceae, Peptostreptococcaceae, and Ruminococcaceae. Lachnospiraceae was the most diverse family with 17 OTUs identified. These findings were basically consistent with previous reports on the bacterial diversity in feces from other mammals.  相似文献   

15.
Microbial community succession was examined over a two-year period using spatially and temporally coordinated water chemistry measurements, metagenomic sequencing, phylogenetic binning and de novo metagenomic assembly in the extreme hypersaline habitat of Lake Tyrrell, Victoria, Australia. Relative abundances of Haloquadratum-related sequences were positively correlated with co-varying concentrations of potassium, magnesium and sulfate, but not sodium, chloride or calcium ions, while relative abundances of Halorubrum, Haloarcula, Halonotius, Halobaculum and Salinibacter-related sequences correlated negatively with Haloquadratum and these same ionic factors. Nanohaloarchaea and Halorhabdus-related sequence abundances were inversely correlated with each other, but not other taxonomic groups. These data, along with predicted gene functions from nearly-complete assembled population metagenomes, suggest different ecological phenotypes for Nanohaloarchaea and Halorhabdus-related strains versus other community members. Nucleotide percent G+C compositions were consistently lower in community metagenomic reads from summer versus winter samples. The same seasonal G+C trends were observed within taxonomically binned read subsets from each of seven different genus-level archaeal groups. Relative seasonal abundances were also linked to percent G+C for assembled population genomes. Together, these data suggest that extreme ionic conditions may exert selective pressure on archaeal populations at the level of genomic nucleotide composition, thus contributing to seasonal successional processes. Despite the unavailability of cultured representatives for most of the organisms identified in this study, effective coordination of physical and biological measurements has enabled discovery and quantification of unexpected taxon-specific, environmentally mediated factors influencing microbial community structure.  相似文献   

16.
Phylogenetic analysis of the nucleotide sequences of 16S rRNA genes in the metagenomic community of Lubomirskia baicalensis has revealed taxonomic diversity of bacteria associated with the endemic freshwater sponge. Fifty-four operational taxonomic units (OTUs) belonging to six bacterial phyla (Actinobacteria, Proteobacteria (class ??-Proteobacteria and ??-Proteobacteria) Verrucomicrobia, Bacteroidetes, Cyanobacteria, and Nitrospira) have been identified. Actinobacteria, whose representatives are known as antibiotic producers, is the dominant phylum of the community (37%, 20 OTUs). All sequences detected shared the maximal homology with unculturable microorganisms from freshwater habitats. The wide diversity of bacteria closely coexisting with the Baikal sponge indicate the complex ecological relationships in the community formed under the unique conditions of Lake Baikal.  相似文献   

17.
A combination of Sanger and 454 sequences of small subunit rRNA loci were used to interrogate microbial diversity in the bovine rumen of 12 cows consuming a forage diet. Observed bacterial species richness, based on the V1–V3 region of the 16S rRNA gene, was between 1,903 to 2,432 species-level operational taxonomic units (OTUs) when 5,520 reads were sampled per animal. Eighty percent of species-level OTUs were dominated by members of the order Clostridiales, Bacteroidales, Erysipelotrichales and unclassified TM7. Abundance of Prevotella species varied widely among the 12 animals. Archaeal species richness, also based on 16S rRNA, was between 8 and 13 OTUs, representing 5 genera. The majority of archaeal OTUs (84%) found in this study were previously observed in public databases with only two new OTUs discovered. Observed rumen fungal species richness, based on the 18S rRNA gene, was between 21 and 40 OTUs with 98.4–99.9% of OTUs represented by more than one read, using Good’s coverage. Examination of the fungal community identified numerous novel groups. Prevotella and Tannerella were overrepresented in the liquid fraction of the rumen while Butyrivibrio and Blautia were significantly overrepresented in the solid fraction of the rumen. No statistical difference was observed between the liquid and solid fractions in biodiversity of archaea and fungi. The survey of microbial communities and analysis of cross-domain correlations suggested there is a far greater extent of microbial diversity in the bovine rumen than previously appreciated, and that next generation sequencing technologies promise to reveal novel species, interactions and pathways that can be studied further in order to better understand how rumen microbial community structure and function affects ruminant feed efficiency, biofuel production, and environmental impact.  相似文献   

18.
Water quality monitoring techniques that target microorganisms in the order Bacteroidales are potential alternatives to conventional methods for detection of fecal indicator bacteria. Bacteroidales and members of the genus Bacteroides have been the focus of microbial source tracking (MST) investigations for discriminating sources of fecal pollution (e.g., human or cattle feces) in environmental waters. For accurate source apportionment to occur, one needs to understand both the abundance of Bacteroides in host feces and the survival of these host-associated microbial markers after deposition in the environment. Studies were undertaken to evaluate the abundance, persistence, and potential for growth of Bacteroidales originating from poultry litter under oxic and anoxic environmental conditions. Bacteroidales abundance, as determined by quantitative PCR (qPCR) with GenBac primers and probe, increased 2 to 5 log gene copies ml−1 and 2 log gene copies g litter−1 under most conditions during incubation of poultry litter in a variety of laboratory microcosm and field mesocosm studies. DNA sequencing of the Bacteroidales organisms in the litter identified taxa with sequences corresponding exactly to the GenBac primer and probe sequences and that were closely related to Bacteroides uniformis, B. ovatus, and B. vulgatus. These results suggest that MST studies using qPCR methods targeting Bacteroidales in watersheds that are affected by poultry litter should be interpreted cautiously. Growth of Bacteroidales originating from poultry litter in environmental waters may occur while Bacteroidales growth from other fecal sources declines, thus confounding the interpretation of MST results.  相似文献   

19.
Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans.  相似文献   

20.
Infectious diseases such as white plague syndrome (WPS) and black band disease (BBD) have caused massive coral loss worldwide. We performed a metaproteomic study on the Abrolhos coral Mussismilia braziliensis to define the types of proteins expressed in healthy corals compared to WPS‐ and BBD‐affected corals. A total of 6363 MS/MS spectra were identified as 361 different proteins. Healthy corals had a set of proteins that may be considered markers of holobiont homoeostasis, including tubulin, histone, Rab family, ribosomal, peridinin–chlorophyll a‐binding protein, F0F1‐type ATP synthase, alpha‐iG protein, calmodulin and ADP‐ribosylation factor. Cnidaria proteins found in healthy M. braziliensis were associated with CnidariaSymbiodinium endosymbiosis and included chaperones (hsp70, hsp90 and calreticulin), structural and membrane modelling proteins (actin) and proteins with functions related to intracellular vesicular traffic (Rab7 and ADP‐ribosylation factor 1) and signal transduction (14‐3‐3 protein and calmodulin). WPS resulted in a clear shift in the predominance of proteins, from those related to aerobic nitrogen‐fixing bacteria (i.e. Rhizobiales, Sphingomonadales and Actinomycetales) in healthy corals to those produced by facultative/anaerobic sulphate‐reducing bacteria (i.e. Enterobacteriales, Alteromonadales, Clostridiales and Bacteroidetes) in WPS corals. BBD corals developed a diverse community dominated by cyanobacteria and sulphur cycle bacteria. Hsp60, hsp90 and adenosylhomocysteinase proteins were produced mainly by cyanobacteria in BBD corals, which is consistent with elevated oxidative stress in hydrogen sulphide‐ and cyanotoxin‐rich environments. This study demonstrates the usefulness of metaproteomics for gaining better comprehension of coral metabolic status in health and disease, especially in reef systems such as the Abrolhos that are suffering from the increase in global and local threatening events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号