首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
苹果幼苗侧根形成与内源多胺关系的通径分析(英文)   总被引:4,自引:0,他引:4  
本文采用偏回归和通径分析研究苹果幼苗侧根形成与内源多胺含量之间的关系。多胺对苹果幼苗侧根形成有重要的调节作用,内源多胺的水平高低与侧根数量之间有显著的线性相关。腐胺、亚精胺和精胺对侧根形成的影响不同,它们对侧根数量的直接通径系数分别是0.0756,0.1558和0.8023。因而表明精胺在增加侧根数量中的作用最大,而亚精胺和腐胺几乎没有直接的作用。不过,亚精胶和腐胺通过影响精胺水平,对侧根形成有很大的间接作用。  相似文献   

2.
亚麻荠对小菜蛾幼虫取食和成虫行为反应的影响   总被引:5,自引:0,他引:5  
亚麻荠是一种很少有害虫危害的油料作物。用室内生测和Y 型嗅觉仪研究了亚麻荠对小菜蛾Plutella xylostella幼虫取食和成虫行 为反应的影响。以甘蓝作对照,用亚麻荠叶片喂养的小菜蛾初孵幼虫3天后校正死亡率为79 .2%,显示了较强的致死作用;喂养小菜蛾3龄幼虫至化蛹,其存活率、化蛹率、蛹重及成 虫寿命都显著降低,表明亚麻荠对小菜蛾幼虫的生长发育有不利影响。在幼虫的取食选择实 验中,有甘蓝叶供选择时,小菜蛾幼虫不取食亚麻荠;在无可选择的情况下,小菜蛾幼虫也 取 食亚麻荠叶片,但取食量很小,与取食甘蓝叶的量相比,差异极显著。行为反应测试表明, 小菜蛾成虫对甘蓝和亚麻荠植株的挥发物都有明显的趋性反应,与对照(净化空气)相比, 差异极显著,而在甘蓝和亚麻荠之间无选择性。说明小菜蛾成虫对亚麻荠植株的挥发物具有 较强的定向反应。  相似文献   

3.
受高浓度NaCl胁迫的滨藜叶中内源腐胺(Put)、叶绿素、丙二醛(MDA)的含量,腐胺/多胺(Put/PA)值以及相对电导率明显增加,内源亚精胺(Spd)、精胺(Spm)、蛋白质的含量和含水量显著下降。,外施亚精胺可以逆转NaCl的胁迫效应,外施二环己基胺(DCHA)的作用与外施亚精胺的相反。  相似文献   

4.
水稻胚与胚乳分化发育中的内源多胺   总被引:1,自引:0,他引:1  
稻胚发育过程中,其内源多胺以腐胺、亚精胺为主。在幼胚分化期,腐胺和亚精胺的含量很高;幼胚分化完成时,其含量急剧下降;直至分化后期才趋稳定。在胚及胚乳发育时期,还出现一种未知多胺X_(22),其含量除在胚分化完成时较少外,在胚发育的其他各期中,含量则一直很高。DNA和蛋白质含量的变化,从分化期开始递增直至物质积累成熟期,其趋势均相同。多胺可能参与胚与胚乳中核酸和蛋白质合成的调节。  相似文献   

5.
腐胺、亚精胺和精胺对稀脉萍的成花均有一定的抑制作用,这种作用随多肢的浓度增加而增强。多胺合成抑制剂MGBG强烈抑制稀脉萍群体的增殖速率,并使稀脉萍群体在非诱导光周期下开花。这种由MGBG引起的增殖速率的降低及成花诱导作用均可被多胺逆转。稀脉萍成花诱导过程中,内源腐胺含量显著升高,亚精胺则下降。  相似文献   

6.
NaCl胁迫对茄子嫁接苗根系多胺代谢的影响   总被引:1,自引:0,他引:1  
采用高压液相色谱法对80 mmol.L-1NaCl胁迫下营养液栽培茄子嫁接苗和自根苗根系多胺代谢的差异进行了研究。结果表明,胁迫2 d时,嫁接苗根系游离态亚精胺和结合态多胺含量显著高于自根苗,游离态腐胺和束缚态多胺显著低于自根苗,游离态精胺含量两者无显著差异。胁迫10 d时,自根苗3种形态的多胺含量均下降,显著低于对照植株,而嫁接苗根系游离态精胺、结合态腐胺和束缚态多胺含量显著高于对照植株。研究结果表明,NaCl胁迫显著提高了茄子嫁接苗和自根苗根系多胺氧化酶的活性,且自根苗增加幅度显著高于嫁接苗;嫁接苗胁迫初期根系结合态多胺的迅速积累及胁迫后期保持较高的精胺含量有利于其耐盐性的提高。  相似文献   

7.
以4个不同基因型的节瓜为材料,通过两个发育时期(10、19片叶展平)茎尖取样,研究了多胺(PA)含量和比值与植株花性别分化的关系。结果表明,节瓜茎尖4种多胺含量差异显著,两个取样时期都是亚精胺(Spd)〉腐胺(Put)〉尸胺(Cad)〉精胺(Spm)。10片叶展平时期多胺含量与节瓜花性别分化之间没有明确的相关性;19片叶展平时期,节瓜茎尖Put、Spd和多胺总量与植株雌花分化比例呈极显著的正相关,而Cad则与雌花分化比例呈极显著的负相关。在两个取样时期,复合指标Spd/PA都与植株雌花分化比例呈显著的正相关,而(Put+Cad)/(Spd+Spm)均与之呈显著的负相关,可以较好地预测节瓜的花性别分化状况。  相似文献   

8.
多胺(Polyamine)是一类含二个或二个以上氨基的脂肪族化合物,它包括腐胺(Putrescine,Put)、精脒(亚精胺)(Spermidine,Spd)、精胺(sperminespm)。多胺来源于L-鸟氨酸;鸟氨酸脱羧酶(OrnithineDecarboxylase,ODC)是多胺合成的限速酶。多胺与细胞的分裂分化、核酸代谢、蛋白质生物合成等有密切关系。细胞外液中浓度升高的多胺主要来源于肿瘤细胞。现已发现神经系统肿瘤、白血病、淋巴瘤、恶性黑色素瘤、肺癌、乳腺癌、消化系统肿瘤、泌尿生殖系统肿瘤病人体液中的多胺含量有不同程度的升高,作为恶性肿瘤辅助诊断、疗效及预后的制定,是一项较好的(临床诊断肿瘤)指标。多胺的分析方法、多胺合成抑制剂、鸟氨酸脱羧酶的调控机制及多胺与癌基因之间关系是值得进一步研究的新颖内容。  相似文献   

9.
NaCl胁迫对茄子嫁接苗叶片多胺代谢和ABA含量的影响   总被引:2,自引:0,他引:2  
以日本引进的茄子设施栽培专用耐盐品种'Torvum Vigor'为砧木,栽培品种'苏崎茄'为接穗,研究了80 mmol·L-1 NaCl胁迫下茄子嫁接苗和自根苗生长、多胺代谢和ABA含量的变化.结果表明,在NaCl胁迫下,茄子嫁接苗的生长量、3种不同形态多胺(游离态、结合态和束缚态)和ABA含量均显著高于自根苗.NaCl胁迫显著增加了叶片精胺和ABA含量;腐胺和亚精胺含量在胁迫前期上升,后期下降.嫁接苗的腐胺和亚精胺含量降低幅度低于自根苗,而精胺和ABA含量上升幅度则高于自根苗.嫁接苗生长和多胺代谢受NaCl胁迫的影响小于自根苗,NaCl胁迫下ABA的快速积累和保持相对高的多胺含量与嫁接苗耐盐性有关.  相似文献   

10.
多胺与激动素对稀脉浮萍离体叶状体衰老的影响   总被引:12,自引:0,他引:12  
多胺与KT 都可抑制暗诱导衰老的稀脉浮萍(Lem na aequinoctialis)离体叶状体的叶绿素损失,且多胺的作用大于KT。KT 还显著抑制蛋白质的损失与蛋白酶活性的上升,而多胺对此却无大的影响。0.05 m m ol/L的甲基乙二醛二脒基-腙(MGBG)轻微促进叶绿素和蛋白质的损失。0.05 m m ol/L的KT 可抑制衰老过程中腐胺(Put)的上升和亚精胺(Spd)的下降,而对精胺(Spm )无明显影响。在稀脉浮萍中,精氨酸脱羧酶(ADC)活性占优势。KT 可轻微促进ADC 活性,而对鸟氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性无显著影响。讨论了多胺与细胞分裂素在抑制植物叶片衰老过程中作用途径的可能关系  相似文献   

11.
Putrescine, spermidine and spermine were transported into the rat lens against a concentration gradient. This process appeared to be energy-dependent and involved a carrier system different from those for amino acids. Competition experiments suggested that the three polyamines were transported by the same system or very similar systems. Incorporated spermine was converted to spermidine and putrescine, and spermidine was converted to putrescine. In contrast, the conversion of putrescine to spermidine and spermine, or the conversion of spermidine to spermine was not observed. Furthermore, ornithine was not utilized for the synthesis of putrescine. These metabolic characteristics of the polyamines in the rat lens were correlated with the extremely low activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase. Other enzymes of polyamine metabolisms, however, were relatively active. In conclusion, the lens has a very low ability for the de novo synthesis of polyamines. The polyamines in the lens are considered to be supplied form the surrounding intraocular fluid by an active transport system specific for polyamines.  相似文献   

12.
The three major polyamines are normally found in chloroplasts of higher plants and are implicated in plant growth and stress response. We have recently shown that putrescine can increase light energy utilization through stimulation of photophosphorylation [Ioannidis et al., (2006) BBA-Bioenergetics, 1757, 821-828]. We are now to compare the role of the three major polyamines in terms of chloroplast bioenergetics. There is a different mode of action between the diamine putrescine and the higher polyamines (spermidine and spermine). Putrescine is an efficient stimulator of ATP synthesis, better than spermidine and spermine in terms of maximal % stimulation. On the other hand, spermidine and spermine are efficient stimulators of non-photochemical quenching. Spermidine and spermine at high concentrations are efficient uncouplers of photophosphorylation. In addition, the higher the polycationic character of the amine being used, the higher was the effectiveness in PSII efficiency restoration, as well as stacking of low salt thylakoids. Spermine with 50 microM increase F(V) as efficiently as 100 microM of spermidine or 1000 microM of putrescine or 1000 microM of Mg(2+). It is also demonstrated that the increase in F(V) derives mainly from the contribution of PSIIalpha centers. These results underline the importance of chloroplastic polyamines in the functionality of the photosynthetic membrane.  相似文献   

13.
Owing in part to their interactions with membrane proteins, polyamines (e.g., spermine, spermidine, and putrescine) have been identified as potential modulators of membrane excitability and Ca(2+) homeostasis in cardiac myocytes. To investigate whether polyamines also affect cardiac myofilament proteins, we assessed the effects of polyamines on contractility using rat myocytes and trabeculae that had been permeabilized with Triton X-100. Spermine, spermidine, and putrescine reversibly increased the [Ca(2+)] required for half-maximal tension (i.e., right-shifted tension pCa curves), with the following order of efficacy: spermine (+4) > spermidine (+3) > putrescine (+2). However, synthetic analogs that differed from spermine in charge distribution were not as effective as spermine in altering isometric tension. None of the polyamines had a significant effect on maximal tension, except at high concentrations. After flash photolysis of DM-Nitrophen (a caged Ca(2+) chelator), spermine accelerated the rate of tension development at low and intermediate but not high [Ca(2+)]. These results indicate that polyamines, especially spermine, interact with myofilament proteins to reduce apparent Ca(2+) binding affinity and speed cross-bridge cycling kinetics at submaximal [Ca(2+)].  相似文献   

14.
Androgenic control of polyamine concentrations in rat epididymis.   总被引:1,自引:0,他引:1  
Unilateral orchidectomy resulted in a significant decrease in tissue content of putrescine and polyamines. However, no differences were detected when the results were expressed in terms of ng g-1 tissue. At 48 h after bilateral orchidectomy, a significant decrease in putrescine content was observed, but spermidine and spermine content were unaffected. The observed decrease in putrescine was prevented by treatment with testosterone propionate, but neither spermidine nor spermine were affected. Bilateral orchidectomy resulted in a significant decrease in the tissue content of putrescine, spermidine and spermine after 7 days. Treatment with testosterone propionate increased the content of putrescine, spermidine and spermine in the epididymis by about 200%, 92% and 34%, respectively. When results were expressed as nmol g-1, a significant decrease after castration in putrescine and spermidine, but not in spermine, was observed. Treatment with testosterone propionate restored putrescine concentration, but had no effect on spermidine and spermine concentrations. In castrated rats treated with testosterone propionate, the anti-androgen flutamide abolished the effect of the androgen on putrescine and spermidine content, but there was no effect on spermine. Acetylputrescine was not detected in the epididymis, while acetylpolyamines were detected at much lower concentrations than polyamines. After bilateral orchidectomy there was a decrease in the tissue content of all acetylpolyamines and an increase in their tissue concentration. The effect of castration on acetylpolyamine content was reversed by testosterone propionate treatment. We conclude that an active synthesis of polyamines occurs in the rat epididymis, and that this process depends upon the androgen environment. Regulation of ornithine decarboxylase activity appears to be the main step that is controlled by androgens.  相似文献   

15.
The three major polyamines—putrescine, spermidine, and spermine—were studied and changes of their levels were examined in extracts of cerebral ganglia and fat body from adult Acheta domesticus. In nervous tissue, only spermidine and spermine were present and spermine was two- to three-fold more abundant than spermidine. The polyamine levels were high up to day 3, decreased on day 4, and then remained relatively unchanged up to day 10. The spermidine/spermine ratios decreased during the imaginal life. Higher spermidine titres were observed in the neural tissue of egg-laying females compared to virgin females. In the fat body, putrescine was detected together with spermidine and spermine. Spermidine and spermine levels were two-fold higher than putrescine. Fat body of virgin females contained two times more polyamines than male fat body. Low at emergence, spermidine and spermine concentrations peaked on days 2–3 only in females, and egg-laying was characterized by an increase of putrescine and spermidine titres. Starvation did not change polyamine contents, implying homeostatic regulation of the intracellular polyamine metabolism. These data showing tissue specific changes in polyamine levels during the imaginal life of Acheta domesticus point to the physiological importance of polyamines as possible intracellular regulators during adult insect development. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Cytoplasmic polyamines block the fast-activating vacuolar cation channel   总被引:9,自引:1,他引:8  
The fast-activating vacuolar (FV) channel dominates the electrical characteristics of the tonoplast at physiological free Ca2+ concentrations. Since polyamines are known to increase in plant cells in response to stress, the regulation of FV channels by polyamines was investigated. Patch-clamp measurements were performed on whole barley ( Hordeum vulgare ) mesophyll vacuoles and on excised tonoplast patches. The trivalent polyamine spermidine and the tetravalent polyamine spermine blocked FV channels with Kd≈ 100 μM and Kd≈ 5 μM, respectively. Increasing cytosolic and vacuolar Ca2+ had no effect on putrescine and spermidine binding to FV channels but slightly decreased the affinity for spermine. The inhibition of FV channels by all three polyamines was not voltage-dependent. This points to a different mode of binding compared to inward rectifier K+ channels and Ca2+-permeable glutamate receptor channels from animal cells, which show rectification due to a voltage-dependent block by polyamines. In plant cells, the common polyamines (putrescine, spermidine and spermine) are likely to mediate a salt stress-induced decrease of ion flux across the vacuolar membrane by blocking FV channels.  相似文献   

17.
18.
The concentration of polyamines in red blood cells (RBCs) is considered to be an index of cell proliferation. This index has been demonstrated to be of clinical importance for the follow-up and treatment of some cancer patients. The concentration of polyamines in RBCs is usually determined by high-performance liquid chromatography (HPLC) with fluorescence detection. In the current work, we present a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of putrescine, spermidine, and spermine, the three major polyamines in RBCs. The polyamines were dansylated and analyzed by an LC gradient of 20-min duration on a C18 column on-line with a tandem mass spectrometer. An internal standard (1,8-diaminooctane) was used for quantification. This method exhibited excellent linearity for the three polyamines with regression coefficients higher than 0.99. The limits of detection for putrescine, spermidine, and spermine were 0.10, 0.75, and 0.50 pmol/ml, respectively. The intrarun precision values for putrescine, spermidine, and spermine all were better than 10%, and the interrun precision values were 13%, 9%, and 20%, respectively. The LC-MS/MS method is sufficiently simple and reliable enough to replace the currently used HPLC method with fluorescence detection in which putrescine is not always detectable.  相似文献   

19.
Nikolaos E. Ioannidis 《BBA》2007,1767(12):1372-1382
The three major polyamines are normally found in chloroplasts of higher plants and are implicated in plant growth and stress response. We have recently shown that putrescine can increase light energy utilization through stimulation of photophosphorylation [Ioannidis et al., (2006) BBA-Bioenergetics, 1757, 821-828]. We are now to compare the role of the three major polyamines in terms of chloroplast bioenergetics. There is a different mode of action between the diamine putrescine and the higher polyamines (spermidine and spermine). Putrescine is an efficient stimulator of ATP synthesis, better than spermidine and spermine in terms of maximal % stimulation. On the other hand, spermidine and spermine are efficient stimulators of non-photochemical quenching. Spermidine and spermine at high concentrations are efficient uncouplers of photophosphorylation. In addition, the higher the polycationic character of the amine being used, the higher was the effectiveness in PSII efficiency restoration, as well as stacking of low salt thylakoids. Spermine with 50 μM increase FV as efficiently as 100 μM of spermidine or 1000 μM of putrescine or 1000 μM of Mg2+. It is also demonstrated that the increase in FV derives mainly from the contribution of PSIIα centers. These results underline the importance of chloroplastic polyamines in the functionality of the photosynthetic membrane.  相似文献   

20.
Labelled putrescine is converted to spermidine and spermine in the retina of both the goldfish and of the rat, but the bulk remains as putrescine and spermidine in the goldfish retina whereas the bulk is present as spermine in the rat retina. Labelled spermidine is converted to spermine and to putrescine in the retina of both species, most remaining as spermidine in the goldfish retina whereas most is converted to spermine in the rat retina. Labelled spermine is converted to both spermidine and putrescine in the retina of both species with a greater conversion in the goldfish retina than in the rat retina. These results provide direct evidence of the interconversion of putrescine, spermidine and spermine in neural tissue from both fish and mammals and suggest that spermine should not be regarded solely as an end-product of putrescine metabolism but also as a source of spermidine and putrescine.The pattern of distribution of putrescine and the polyamines, spermidine and spermine, in goldfish retina is the reverse of that in rat retina: Putrescine is the most abundant in goldfish retina whereas spermine is most abundant in rat retina suggesting that the individual polyamines are of different importance in the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号