首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The enzyme acetoacetyl-CoA synthetase which catalyzes the synthesis of acetoacetyl-CoA from acetoacetate, CoA and ATP is shown to be present in mitochondrial and cytoplasmic fractions of rat liver. It was decreased in both specific activity and amount after starvation for 48 hours. It is proposed that the synthetase normally functions in the re-utilization of some of the acetoacetate produced within the mitochondrion as well as that reaching the cytoplasm, and that acetoacetate can function as an acetyl carrier between mitochondria and cytoplasm.  相似文献   

2.
Inhibition of acetoacetyl-CoA synthetase from rat liver by fatty acyl-CoAs   总被引:1,自引:0,他引:1  
The activity of acetoacetyl-CoA synthetase from rat liver was found to be negatively regulated by coenzyme A, fatty acyl-CoAs and acetoacetyl-CoA in vitro. With increasing concentrations of coenzyme A (substrate inhibition occurring at concentrations higher than 50 microM) the pH optimum shifted toward the acidic side (7.5-8.5 with 5 microM coenzyme A and 6.5-7.0 with 500 microM coenzyme A), in parallel with progressively decreasing enzyme activity. Fatty acyl-CoAs of various chain lengths dose-dependently inhibited acetoacetyl-CoA synthetase from rat liver, but much less effectively a similar enzyme from a bacterium, Zoogloea ramigera I-16-M. Palmitoyl-CoA, the most potent inhibitor of the rat liver enzyme, with an apparent Ki value of 9.8 microM, apparently inhibited the enzyme below its critical micellar concentration, not due to its detergent action. Acetoacetyl-CoA showed product inhibition with a Ki value of 15 microM. These results suggest a possible physiological regulation mechanism for this enzyme with respect to fatty acid biosynthesis.  相似文献   

3.
Acetoacetyl-CoA synthetase (AACS) is the key enzyme in the anabolic utilization of ketone bodies (KBs) for denovo lipid synthesis, a process that bypasses citrate and ATP citrate lyase. This review shows that AACS is a highly regulated, cytosolic, and lipogenic enzyme and that many tissues can readily use KBs for denovo lipid synthesis. AACS has a low micromolar Km for acetoacetate, and supply of acetoacetate should not limit its activity in the fed state. In many tissues, AACS appears to be regulated in conjunction with the need for cholesterol, but in adipose tissue, it seems tied to fatty acid synthesis. KBs are readily utilized as substrates for lipid synthesis in lipogenic tissues, including liver, adipose tissue, lactating mammary gland, skin, intestinal mucosa, adrenals, and developing brain. In numerous studied cases, KBs served several-fold better than glucose as substrates for lipid synthesis, and when present, KBs suppressed the utilization of glucose for lipid synthesis. Here, it is hypothesized that a physiological role for the utilization of KBs for lipid synthesis is a metabolic process of lipid interconversion. Fatty acids are converted to KBs in liver, and then, the KBs are utilized to synthesize cholesterol and other long-chain fatty acids in liver and nonhepatic tissues. The conversion of fatty acids to cholesterol via the KBs may be a particularly important example of lipid interconversion. Utilizing KBs for lipid synthesis is glucose sparing and probably is important with low carbohydrate diets. Metabolic situations and tissues where this pathway may be important are discussed.  相似文献   

4.
We have previously shown that the two membrane bound enzymes leukotriene C synthase and microsomal glutathione S-transferase interact in vitro and in vivo. Rat basophilic leukemia cells and murine mastocytoma cells, two well-known sources of leukotriene C synthase, both expressed microsomal glutathione S-transferase as determined by Western blot analyses. Several human tissues were found to contain both leukotriene C synthase and microsomal glutathione S-transferase mRNA. These data suggest that the interaction may be physiologically important. To study this further, expression vectors encoding the two enzymes were cotransfected into mammalian cells and the subcellular localization of the enzymes was determined by indirect immunofluorescence using confocal laser scanning microscopy. The results showed that leukotriene C synthase and microsomal glutathione S-transferase were both localized on the nuclear envelope and adjacent parts of the endoplasmic reticulum. Image overlay demonstrated virtually identical localization. We also observed that coexpression substantially reduced the catalytic activity of each enzyme suggesting that a mechanism involving protein–protein interaction may contribute to the regulation of LTC4 production.  相似文献   

5.
The effects of oleic acid on the activities of cytosolic HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase, AcAc-CoA (acetoacetyl-CoA) thiolase and AcAc-CoA synthetase, as well as microsomal HMG-CoA reductase, all enzymes in the pathway of cholesterol biosynthesis, were studied in the isolated perfused rat liver. Oleic acid bound to bovine serum albumin, or albumin alone, was infused for 4 h at a rate sufficient to sustain an average concentration of 0.61 +/- 0.05 mM fatty acid during the perfusion. Hepatic cytosol and microsomal fractions were isolated at the termination of the perfusion. Oleic acid simultaneously increased the activities of the cytosolic cholesterol-biosynthetic enzymes 1.4-2.7-fold in livers from normal fed rats and from animals fasted for 24 h. These effects were accompanied by increased net secretion by the liver of cholesterol and triacylglycerol in the very-low-density lipoprotein (VLDL). We confirmed the observations reported previously from this laboratory of the stimulation by oleic acid of microsomal HMG-CoA reductase. In cytosols from perfused livers, the increase in AcAc-CoA thiolase activity was characterized by an increase in Vmax. without any change in the apparent Km of the enzyme for AcAc-CoA. In contrast, oleic acid decreased the Km of HMG-CoA synthase for Ac-CoA, without alteration of the Vmax. of the enzyme. The Vmax. of AcAc-CoA synthetase was increased by oleic acid, and there was a trend towards a small increase in the Km of the enzyme for acetoacetate. These data allow us to conclude that the enzymes that supply the HMG-CoA required for hepatic cholesterogenesis are stimulated, as is HMG-CoA reductase, by a physiological substrate, fatty acid, that increases rates of hepatic cholesterol synthesis and cholesterol secretion. Furthermore, we suggest that these effects of fatty acid on hepatic cholesterol metabolism result from stimulation of secretion of triacylglycerol in the VLDL by fatty acids, and the absolute requirement of cholesterol as an important structural surface component of the VLDL necessary for transport of triacylglycerol from the liver.  相似文献   

6.
7.
When the myeloperoxidase-catalyzed peroxidation of acetoacetate proceeds in the presence of piperidinooxy free radical, methyl glyoxal is formed, and the nitroxide group is reduced to the secondary amine. A mechanism is advanced wherein an alpha-carbon-centered acetoacetate radical, generated by the peroxidase, forms an unstable adduct with the nitroxide group, subsequently decomposing to the observed products. Formation of methyl glyoxal, detected as its bis-2,4-dinitrophenylhydrazone by radial thin-layer chromatography, represents a method of determining free radical acetoacetate peroxidation by other peroxidases. It is shown that lactoperoxidase, prostaglandin synthetase, and prostacyclin synthetase generate methyl glyoxal with requirements identical to those of myeloperoxidase. With prostaglandin synthetase, arachidonic acid could replace the supporting peroxide. Substantiation that the catalyst for the reaction in aortic microsomes was prostacyclin synthetase was obtained by showing that 15-hydroperoxyarachidonic acid strongly inhibited the activity (5). The finding that these peroxidases catalyze radical acetoacetate oxidation could have broad implications for cellular damage via lipid peroxidation (7). Specifically, radical oxidation of acetoacetate by prostacyclin synthetase is proposed to be a link between cardiovascular risk factors and the initiation of atherosclerosis.  相似文献   

8.
9.
10.
Acetoacetyl-CoA synthetase (AACS), an essential enzyme for the synthesis of fatty acid and cholesterol from ketone bodies, was found to be highly expressed in mouse adipose tissue, and GC box and C/EBPs motif were crucial for AACS promoter activity in 3T3-L1 adipocytes. Moreover, we found that AACS promoter activity was controlled mainly by C/EBPalpha during adipogenesis.  相似文献   

11.
12.
Acetoacetyl-CoA synthetase (AACS), an essential enzyme for the synthesis of fatty acid and cholesterol from ketone bodies, was found to be highly expressed in mouse adipose tissue, and GC box and C/EBPs motif were crucial for AACS promoter activity in 3T3-L1 adipocytes. Moreover, we found that AACS promoter activity was controlled mainly by C/EBPα during adipogenesis.  相似文献   

13.
5-Phosphoribosyl pyrophosphate synthetase from Ehrlich ascites tumor cells   总被引:3,自引:0,他引:3  
P C Wong  A W Murray 《Biochemistry》1969,8(4):1608-1614
  相似文献   

14.
Adenylosuccinate synthetase has been partially purified from Novikoff ascites tumor cells. The properties of the protein are quite different from the enzyme from rat liver in that the Km for aspartate is higher and the KI for the feedback inhibitor AMP is also higher. The antibiotic hadacidin has a preferential inhibitory effect on the tumor enzyme. These results suggest that the Novikoff ascites tumor enzyme is less sensitive to normal feedback controls but may be more sensitive to specific antitumor drugs.  相似文献   

15.
16.
Summary PGE2 and LTC4 syntheses in Ehrlich ascites cells were measured by radioimmunoassay. Hypotonic swelling results in stimulation of the leukotriene synthesis and a concomitant reduction in the prostaglandin synthesis. If the cells have access to sufficient arachidonic acid there is a parallel increase in the synthesis of both leukotrienes and prostaglandins following hypotonic exposure. PGE2 significantly inhibits regulatory volume decrease (RVD) following hypotonic swelling in Na-containing medium but not in Na-free media, supporting the hypothesis that the effect of PGE2 is on the Na permeability. PGE2 also had no effect on RVD in Na-free media in the presence of the cation ionophore gramicidin. Since the Cl permeability becomes rate limiting for RVD in the presence of gramicidin, whereas the K permeability is rate limiting in its absence, it is concluded that PGE2 neither affects Cl nor K permeability. Addition of LTD4 accelerates RVD and since the K permeability is rate limiting for RVD this shows that LTD4 stimulates the K permeability. Inhibition of the leukotriene synthesis by nordihydroguaiaretic acid inhibits RVD even when a high K conductance has been ensured by the presence of gramicidin. It is, therefore, proposed that an increase in leukotriene synthesis after hypotonic swelling is involved also in the activation of the Cl transport pathway.  相似文献   

17.
Role of myeloid cells in tumor angiogenesis and growth   总被引:5,自引:0,他引:5  
Cells of the innate immune system have a key role in maintaining homeostasis by providing the first line of defense against many pathogens. Innate immunity can also modulate the activity of acquired immunity by several mechanisms. However, subsets of myeloid cells can facilitate tumor growth, because these cells produce angiogenic factors and can also prevent the immune system from attacking tumor cells. Recent studies also emphasize the role of myeloid cells in mediating refractoriness to anti-VEGF treatments. This function of myeloid cells occurs through a proangiogenic pathway that is, at least in part, driven by the secreted protein Bv8. This review summarizes recent findings on the complex role of bone marrow-derived cells in tumor growth.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号