首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We studied the effect of cilostazol, a selective inhibitor of phosphodiesterase 3, on barrier functions of blood–brain barrier (BBB)-related endothelial cells, primary rat brain capillary endothelial cells (RBEC), and the immortalized human brain endothelial cell line hCMEC/D3. The pharmacological potency of cilostazol was also evaluated on ischemia-related BBB dysfunction using a triple co-culture BBB model (BBB Kit?) subjected to 6-h oxygen glucose deprivation (OGD) and 3-h reoxygenation. There was expression of phosphodiesterase 3B mRNA in RBEC, and a significant increase in intracellular cyclic AMP (cAMP) content was detected in RBEC treated with both 1 and 10 μM cilostazol. Cilostazol increased the transendothelial electrical resistance (TEER), an index of barrier tightness of interendothelial tight junctions (TJs), and decreased the endothelial permeability of sodium fluorescein through the RBEC monolayer. The effects on these barrier functions were significantly reduced in the presence of protein kinase A (PKA) inhibitor H-89. Microscopic observation revealed smooth and even localization of occludin immunostaining at TJs and F-actin fibers at the cell borders in cilostazol-treated RBEC. In hCMEC/D3 cells treated with 1 and 10 μM cilostazol for 24 and 96 h, P-glycoprotein transporter activity was increased, as assessed by rhodamine 123 accumulation. Cilostazol improved the TEER in our triple co-culture BBB model with 6-h OGD and 3-h reoxygenation. As cilostazol stabilized barrier integrity in BBB-related endothelial cells, probably via cAMP/PKA signaling, the possibility that cilostazol acts as a BBB-protective drug against cerebral ischemic insults to neurons has to be considered.  相似文献   

2.
We have recently shown that cyclic AMP (cAMP) increases claudin-5 immunoreactivity along cell boundaries and could promote phosphorylation of claudin-5 on threonine residues in porcine blood-brain barrier (BBB) endothelial cells via a protein kinase A (PKA)-dependent pathway (Exp. Cell Res. 290 [2003] 275). Along this line, we identified a putative phosphorylation site for PKA at Thr(207) in the intracytoplasmic carboxyl terminal domain of claudin-5. To clarify the biological significance of this site in regulation of endothelial barrier functions, we established rat lung endothelial (RLE) cells expressing doxycycline (Dox)-inducible wild-type claudin-5 and a mutant with a substitution of Ala for Thr(207) (CL5T207A). We show that induction of wild-type claudin-5 is sufficient to reconstitute the paracellular barrier against inulin (5 kDa), but not mannitol (182 Da), in leaky RLE cells. By contrast, the barrier against both molecules was induced in the mutant cells. We also demonstrate that, upon cAMP treatment, Thr(207) of claudin-5 is involved in enhancement of claudin-5 immunoreactive signals along cell borders, rapid reduction in transendothelial electrical resistance (TER), and loosening of the claudin-5-based endothelial barrier against mannitol, but not inulin. cAMP decreased the claudin-5-based endothelial barrier, strongly suggesting that other tight-junction molecule(s) are required to elevate endothelial barrier functions in response to cAMP.  相似文献   

3.
Previously we reported that the co-culture of non-brain vascular endothelial cells with glioma cells leads to the induction of a more differentiated endothelial cell phenotype which exhibits important properties of the blood-brain barrier (BBB). Recognising the potential for improving the model barrier system with agents known to modify the growth and differentiation of cells in culture we examined the effects of four differentiating agents (butyric acid, dexamethasone, retinoic acid, and dimethyl sulfoxide) on barrier function. Of these agents only butyric acid and dexamethasone resulted in an enhancement (depending on the dose used) of transendothelial electrical resistance (barrier function). The greatest effect was observed with butyric acid in a dose-dependent manner and was slow in onset and only occurred in the endothelial/glial cell co-cultures. These data indicate that butyric acid may be a beneficial agent in optimising conditions necessary for induction of BBB properties in in vitro barrier systems.  相似文献   

4.
Summary 1. The specifically regulated restrictive permeability barrier to cells and molecules is the most important feature of the blood–brain barrier (BBB). The aim of this review was to summarize permeability data obtained on in vitro BBB models by measurement of transendothelial electrical resistance and by calculation of permeability coefficients for paracellular or transendothelial tracers.2. Results from primary cultures of cerebral microvascular endothelial cells or immortalized cell lines from bovine, human, porcine, and rodent origin are presented. Effects of coculture with astroglia, neurons, mesenchymal cells, blood cells, and conditioned media, as well as physiological influence of serum components, hormones, growth factors, lipids, and lipoproteins on the barrier function are discussed.3. BBB permeability results gained on in vitro models of pathological conditions including hypoxia and reoxygenation, neurodegenerative diseases, or bacterial and viral infections have been reviewed. Effects of cytokines, vasoactive mediators, and other pathogenic factors on barrier integrity are also detailed.4. Pharmacological treatments modulating intracellular cyclic nucleotide or calcium levels, and activity of protein kinases, protein tyrosine phosphatases, phospholipases, cyclooxygenases, or lipoxygenases able to change BBB integrity are outlined. Barrier regulation by drugs involved in the metabolism of nitric oxide and reactive oxygen species, as well as influence of miscellaneous treatments are also listed and evaluated.5. Though recent advances resulted in development of improved in vitro BBB model systems to investigate disease modeling, drug screening, and testing vectors targeting the brain, there is a need for checking validity of permeability models and cautious interpretation of data.This revised article was published online in May 2005 with a February 2005 cover date.  相似文献   

5.
血脑屏障(blood-brain barrier, BBB)是位于中枢神经系统(central nervous system, CNS)和中枢系统环境间的一层生理保护屏障. 凡是作用于CNS 的药物,必须先通过BBB. 为了寻找能够进入CNS的药物,通过细胞培养时间优化 和跨膜电阻测定等,建立了ECV304/C6共培养通过BBB药物筛选模型. 并将该模型应用于从传统中药淫羊藿的提取物中,筛选可能作用于CNS的活性成分,结合高压液相色谱-质谱联用技术(HPLC-MS),对筛选出的化合物进行鉴定分析. 研究结果表明,淫羊藿提取物中至少有13种成分能够穿越BBB模型,其中2种成分被确认为淫羊藿苷和宝藿苷Ⅰ,为CNS药物开发的早期快速筛选提供了实验依据.  相似文献   

6.
A novel triple cell neurovascular unit (NVU) model co-culturing with neurons, brain microvascular endothelial cells (BMECs) and astrocytes was established in this study for investigating the cerebral diseases and screening the candidates of therapeutic drug. We have first performed the cell identification and morphological characterization, analyzed the specific protein expression and determined the blood-brain barrier (BBB) function of the co-culture model under normal condition. Then, we further determined the BBB function, inflammation, cell injury and the variation of neuroprotective factor in this model after anoxia-reoxygenation. The results suggest that this model exhibited a better BBB function and significantly increased expression of P-glycoprotein (Pg-P) and ZO-1 compared with BMECs only or co-culture with astrocytes or neurons. After anoxia-reoxygenation, the pathological changes of this model were basically resemblance to the pathological changes of brain cells and BBB in vivo. And nimodipine, an antagonist of calcium, could reverse those changes as well. According to our observations, we deduce that this triple cell co-culture model exhibits the basic structure, function and cell-cell interaction of NVU, which may offer a more proper in vitro system of NVU for the further investigation of cerebral diseases and drug screening.  相似文献   

7.
The blood-brain barrier (BBB) is composed of the cerebral microvascular endothelium, which, together with astrocytes, pericytes, and the extracellular matrix (ECM), contributes to a "neurovascular unit". It was our objective to clarify the impact of endogenous extracellular matrices on the barrier function of BBB microvascular endothelial cells cultured in vitro. The study was performed in two consecutive steps: (i) The ECM-donating cells (astrocytes, pericytes, endothelial cells) were grown to confluence and then removed from the growth substrate by a protocol that leaves the ECM behind. (ii) Suspensions of cerebral endothelial cells were seeded on the endogenous matrices and barrier formation was followed with time. In order to quantify the tightness of the cell junctions, all experiments were performed on planar gold-film electrodes that can be used to read the electrical resistance of the cell layers as a direct measure for endothelial barrier function (electric cell-substrate impedance sensing, ECIS). We observed that endogenously isolated ECM from both, astrocytes and pericytes, improved the tightness of cerebral endothelial cells significantly compared to ECM that was derived from the endothelial cells themselves as a control. Moreover, when cerebral endothelial cells were grown on extracellular matrices produced by non-brain endothelial cells (aorta), the electrical resistances were markedly reduced. Our observations indicate that glia-derived ECM - as an essential part of the BBB - is required to ensure proper barrier formation of cerebral endothelial cells.  相似文献   

8.
Cyclic adenosine monophosphate (AMP) has numerous important effects on cell structure and function, but its role in endothelial cells is unclear. Since cyclic AMP has been shown to affect transmembrane transport, cell growth and morphology, cellular adhesion, and cytoskeletal organization, it may be an important determinant of endothelial barrier properties. To test this we exposed bovine pulmonary artery endothelial cell monolayers to substances known to increase cyclic AMP and measured their effect on endothelial permeability to albumin and endothelial cell cyclic AMP concentrations. Cholera toxin (CT), a stimulant of the guanine nucleotide binding subunit of adenylate cyclase, led to a concentration-dependent 2-6-fold increase in cyclic AMP which was associated with a 3-10-fold reduction in albumin transfer across endothelial monolayers. The effect was not specific to albumin as similar barrier-enhancing effects were also noted with an unrelated macromolecule, fluorescein isothiocyanate (FITC)-dextran (MW 70,000). Barrier enhancement with cyclic AMP elevation was also observed with forskolin, a stimulant of the catalytic subunit of adenylate cyclase. The temporal pattern of barrier enhancement seen with these agents paralleled their effects on increasing cyclic AMP, and the barrier enhancement could be reproduced by incubation with either dibutyryl cyclic AMP or Sp-cAMPS, cyclic AMP-dependent protein kinase agonists. Furthermore, the forskolin effect on barrier enhancement was partially reversed with Rp-cAMPS, an antagonist of cyclic AMP-dependent protein kinase. Since endothelial actin polymerization may be an important determinant of endothelial barrier function, we sought to determine whether the cyclic AMP-induced effects were associated with increases in the polymerized actin pool (F-actin). Both cholera toxin and forskolin led to apparent endothelial cell spreading and quantitative increases in endothelial cell F-actin fluorescence. In conclusion, increased endothelial cell cyclic adenine nucleotide activity was an important determinant of endothelial barrier function in vitro. The barrier enhancement was associated with increased endothelial apposition and increases in F-actin, suggesting that influences on cytoskeletal assembly may be involved in this process.  相似文献   

9.
《Cytotherapy》2022,24(5):489-499
Background and aimsWe have previously reported that outgrowth endothelial cells (OECs) restore cerebral endothelial cell integrity through effective homing to the injury site. This study further investigates whether treatment with OECs can restore blood–brain barrier (BBB) function in settings of ischemia-reperfusion injury both in vitro and in vivo.MethodsAn in vitro model of human BBB was established by co-culture of astrocytes, pericytes, and human brain microvascular endothelial cells (HBMECs) before exposure to oxygen-glucose deprivation alone or followed by reperfusion (OGD±R) in the absence or presence of exogenous OECs. Using a rodent model of middle cerebral artery occlusion (MCAO), we further assessed the therapeutic potential of OECs in vivo.ResultsOwing to their prominent antioxidant, proliferative, and migratory properties, alongside their inherent capacity to incorporate into brain vasculature, treatments with OECs attenuated the extent of OGD±R injury on BBB integrity and function, as ascertained by increases in transendothelial electrical resistance and decreases in paracellular flux across the barrier. Similarly, intravenous delivery of OECs also led to better barrier protection in MCAO rats as evidenced by significant decreases in ipsilateral brain edema volumes on day 3 after treatment. Mechanistic studies subsequently showed that treatment with OECs substantially reduced oxidative stress and apoptosis in HBMECs subjected to ischemic damages.ConclusionThis experimental study shows that OEC-based cell therapy restores BBB integrity in an effective manner by integrating into resident cerebral microvascular network, suppressing oxidative stress and cellular apoptosis.  相似文献   

10.
The destruction of blood–brain barrier (BBB) and blood-nerve barrier (BNB) has been considered to be a key step in the disease process of a number of neurological disorders including cerebral ischemia, Alzheimer’s disease, multiple sclerosis, and diabetic neuropathy. Although glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) facilitate neuronal or axonal regeneration in the brain or peripheral nerves, their action in the BBB and BNB remains unclear. The purpose of the present study was to elucidate whether these neurotrophic factors secreted from the brain or peripheral nerve pericytes increase the barrier function of the BBB or BNB, using our newly established human brain microvascular endothelial cell (BMEC) line or peripheral nerve microvascular endothelial cell (PnMEC) line. GDNF increased the expression of claudin-5 and the transendothelial electrical resistance (TEER) of BMECs and PnMECs, whereas BDNF did not have this effect. Furthermore, we herein demonstrate that the GDNF secreted from the brain and peripheral nerve pericytes was one of the key molecules responsible for the up-regulation of claudin-5 expression and the TEER value in the BBB and BNB. These results indicate that the regulation of GDNF secreted from pericytes may therefore be a novel therapeutic strategy to modify the BBB or BNB functions and promote brain or peripheral nerve regeneration.  相似文献   

11.
The blood–brain barrier (BBB) is a term used to describe the unique properties of central nervous system (CNS) blood vessels. One important BBB property is the formation of a paracellular barrier made by tight junctions (TJs) between CNS endothelial cells (ECs). Here, we show that Lipolysis-stimulated lipoprotein receptor (LSR), a component of paracellular junctions at points in which three cell membranes meet, is greatly enriched in CNS ECs compared with ECs in other nonneural tissues. We demonstrate that LSR is specifically expressed at tricellular junctions and that its expression correlates with the onset of BBB formation during embryogenesis. We further demonstrate that the BBB does not seal during embryogenesis in Lsr knockout mice with a leakage to small molecules. Finally, in mouse models in which BBB was disrupted, including an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and a middle cerebral artery occlusion (MCAO) model of stroke, LSR was down-regulated, linking loss of LSR and pathological BBB leakage.  相似文献   

12.
(1) The blood–brain barrier (BBB) characteristics of cerebral endothelial cells are induced by organ-specific local signals. Brain endothelial cells lose their phenotype in cultures without cross-talk with neighboring cells. (2) In contrast to astrocytes, pericytes, another neighboring cell of endothelial cells in brain capillaries, are rarely used in BBB co-culture systems. (3) Seven different types of BBB models, mono-culture, double and triple co-cultures, were constructed from primary rat brain endothelial cells, astrocytes and pericytes on culture inserts. The barrier integrity of the models were compared by measurement of transendothelial electrical resistance and permeability for the small molecular weight marker fluorescein. (4) We could confirm that brain endothelial monolayers in mono-culture do not form tight barrier. Pericytes induced higher electrical resistance and lower permeability for fluorescein than type I astrocytes in co-culture conditions. In triple co-culture models the tightest barrier was observed when endothelial cells and pericytes were positioned on the two sides of the porous filter membrane of the inserts and astrocytes at the bottom of the culture dish. (5) For the first time a rat primary culture based syngeneic triple co-culture BBB model has been constructed using brain pericytes beside brain endothelial cells and astrocytes. This model, mimicking closely the anatomical position of the cells at the BBB in vivo, was superior to the other BBB models tested. (6) The influence of pericytes on the BBB properties of brain endothelial cells may be as important as that of astrocytes and could be exploited in the construction of better BBB models.  相似文献   

13.
The blood-brain barrier (BBB), which constitutes the interface between blood and cerebral parenchyma, has been shown to be disrupted during retroviral associated neuromyelopathies. Human T cell leukemia virus (HTLV-1)-associated myelopathy/tropical spastic paraparesis is a slowly progressive neurodegenerative disease, in which evidence of BBB breakdown has been demonstrated by the presence of lymphocytic infiltrates in the CNS and plasma protein leakage through cerebral endothelium. Using an in vitro human BBB model, we investigated the cellular and molecular mechanisms involved in endothelial changes induced by HTLV-1-infected lymphocytes. We demonstrate that coculture with infected lymphocytes induces an increase in paracellular endothelial permeability and transcellular migration, via IL-1alpha and TNF-alpha secretion. This disruption is associated with tight junction disorganization between endothelial cells, and alterations in the expression pattern of tight junction proteins such as zonula occludens 1. These changes could be prevented by inhibition of the NF-kappaB pathway or of myosin light chain kinase activity. Such disorganization was confirmed in histological sections of spinal cord from an HTLV-1-associated myelopathy/tropical spastic paraparesis patient. Based on this BBB model, the present data indicate that HTLV-1-infected lymphocytes can induce BBB breakdown and may be responsible for the CNS infiltration that occurs in the early steps of retroviral-associated neuromyelopathies.  相似文献   

14.
The blood–brain barrier (BBB) of the central nervous system (CNS) consists of a unique subset of endothelial cells that possess tight junctions which form a relatively impervious physical barrier to a large variety of blood components. Until recently, there have been no good in vitro models for studying the human BBB without the co-culture of feeder cells. The hCMEC/D3 cell line is the first stable, well-differentiated human brain endothelial cell line that grows independently in culture with characteristics that closely resemble those of resident human brain endothelial cells. As our previously published findings demonstrated the importance of adenosine receptor (AR) signaling for lymphocyte entry into the CNS, we wanted to determine if human brain endothelial cells possess the capacity to generate and respond to extracellular adenosine. Utilizing the hCMEC/D3 cell line, we determined that these cells express CD73, the cell surface enzyme that converts extracellular AMP to adenosine. When grown under normal conditions, these cells also express the A1, A2A, and A2B AR subtypes. Additionally, hCMEC/D3 cells are responsive to extracellular AR signaling, as cAMP levels increase following the addition of the broad spectrum AR agonist 5′-N-ethylcarboxamidoadenosine (NECA). Overall, these results indicate that human brain endothelial cells, and most likely the human BBB, have the capacity to synthesize and respond to extracellular adenosine.  相似文献   

15.
The blood–brain barrier (BBB) is formed by brain endothelial cells, and decreased BBB integrity contributes to vasogenic cerebral edema and increased mortality after stroke. In the present study, we investigated the protective effect of perampanel, an orally active noncompetitive AMPA receptor antagonist, on BBB permeability in an in vitro ischemia model in murine brain endothelial cells (mBECs). The results showed that perampanel significantly attenuated oxygen glucose deprivation (OGD)-induced loss of cell viability, release of lactate dehydrogenase, and apoptotic cell death in a dose-dependent manner. Perampanel treatment did not alter the expression and surface distribution of various glutamate receptors. Furthermore, the results of calcium imaging showed that perampanel had no effect on OGD-induced increase in intracellular Ca2+ concentrations. Treatment with perampanel markedly reduced the paracellular permeability of mBECs after OGD in different time points, as measured by transepithelial electrical resistance assay. In addition, the expression of claudin-5 at protein level, but not at mRNA level, was increased by perampanel treatment after OGD. Knockdown of claudin-5 partially prevented perampanel-induced protection in cell viability and BBB integrity in OGD-injured mBECs. These data show that the noncompetitive AMPA receptor antagonist perampanel affords protection against ischemic stroke through caludin-5 mediated regulation of BBB permeability.  相似文献   

16.
17.
Glioblastoma multiforme (GBM) cells invade along the existing normal capillaries in brain. Normal capillary endothelial cells function as the blood–brain barrier (BBB) that limits permeability of chemicals into the brain. To investigate whether GBM cells modulate the BBB function of normal endothelial cells, we developed a new in vitro BBB model with primary cultures of rat brain endothelial cells (RBECs), pericytes, and astrocytes. Cells were plated on a membrane with 8 μm pores, either as a monolayer or as a BBB model with triple layer culture. The BBB model consisted of RBEC on the luminal side as a bottom, and pericytes and astrocytes on the abluminal side as a top of the chamber. Human GBM cell line, LN-18 cells, or lung cancer cell line, NCI-H1299 cells, placed on either the RBEC monolayer or the BBB model increased the transendothelial electrical resistance (TEER) values against the model, which peaked within 72 h after the tumor cell application. The TEER value gradually returned to baseline with LN-18 cells, whereas the value quickly dropped to the baseline in 24 h with NCI-H1299 cells. NCI-H1299 cells invaded into the RBEC layer through the membrane, but LN-18 cells did not. Fibroblast growth factor 2 (FGF-2) strengthens the endothelial cell BBB function by increased occludin and ZO-1 expression. In our model, LN-18 and NCI-H1299 cells secreted FGF-2, and a neutralization antibody to FGF-2 inhibited LN-18 cells enhanced BBB function. These results suggest that FGF-2 would be a novel therapeutic target for GBM in the perivascular invasive front.  相似文献   

18.
Disruption of the blood-brain barrier (BBB) is central in the pathophysiology of acute cerebral complications in women who have preeclampsia. Underling mechanisms are unclear.Using female human brain endothelial cells as an in vitro model of BBB, we show that plasma of women with preeclampsia increases cell apoptosis and permeability via activation of the vascular endothelial growth factor receptor 2 (VEGFR2).Since plasma of women with preeclampsia also enhanced VEGFR2 phosphorylation in the tyrosine 951 but decreased phosphorylation at the tyrosine 1175, we propose the former would be the more likely active form of VEGFR2 responsible for BBB alterations.  相似文献   

19.
We have previously reported that various stressors acutely elevate levels of pituitary cyclic AMP in vivo and that this stress response is not seen in animals tested 7 or 30 days post-adrenalectomy. In this report we present data that demonstrate that the loss of the pituitary cyclic AMP stress response following adrenalectomy is not the result of the loss of stress-induced adrenal epinephrine release. These data show that (1) although administration of epinephrine to intact rats does not elevate levels of pituitary cyclic AMP, administration of epinephrine to adrenalectomized animals does not elevate pituitary cyclic AMP levels in vivo; (2) splanchnic denervation prevents stress-induced adrenal epinephrine release but does not abolish stress-induced increases in pituitary cyclic AMP; and (3) the time course of the developing subsensitive pituitary cyclic AMP response to stress following adrenalectomy is much slower (2 to 3 days) than the loss of circulating epinephrine.  相似文献   

20.
A cell culture model of the blood-brain barrier   总被引:26,自引:3,他引:26       下载免费PDF全文
Endothelial cells that make up brain capillaries and constitute the blood-brain barrier become different from peripheral endothelial cells in response to inductive factors found in the nervous system. We have established a cell culture model of the blood-brain barrier by treating brain endothelial cells with a combination of astrocyte-conditioned medium and agents that elevate intracellular cAMP. These cells form high resistance tight junctions and exhibit low rates of paracellular leakage and fluid-phase endocytosis. They also undergo a dramatic structural reorganization as they form tight junctions. Results from these studies suggest modes of manipulating the permeability of the blood-brain barrier, potentially providing the basis for increasing the penetration of drugs into the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号