首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome c oxidase was reconstituted in phospholipid vesicles in the presence of highly hydrophobic poly(vinyl alkanoate) polymers. Electron-microscopy observations demonstrated that polymer interaction with the lipid phase induces vesicles to adopt smaller diameters than those typical of standard proteoliposomes. Functional characterization of these polymer-proteoliposome structures indicates that the reconstitution of the enzyme proceeds efficiently without causing either scrambling of the protein orientation in the membrane or loss of respiratory control. A clear dependence of respiratory control ratio on vesicle size was also demonstrated, which is in agreement with a previous model proposed for control of activity of cytochrome c oxidase vesicles [Brunori, Sarti, Colosimo, Antonini, Malatesta, Jones & Wilson (1985) EMBO J. 4, 2365-2368].  相似文献   

2.
Purified Pseudomonas cytochrome oxidase has been associated with asolectin liposomes by two different methods. Firstly, the enzyme was attached to liposomic membranes by adding it to a cholate-phospholipid dispersion and subsequently dialyzing the detergent out of suspension. In the second case the enzyme was adsorbed on the preformed liposomes when added to them after the dialysis. A stimulation of the cytochrome oxidase activity approximately twenty-fold was observed by the first method. In contrast, the activation was absent in the second type of preparation, indicating that interaction between the enzyme and phospholipids is very different in the two types of vesicles. The cholate-dialysis method for reconstitution of protein-phospholipid vesicles seems to lead to rather heterogenous preparations. These can be further fractionated, not only according to their size but also to the protein/phospholipid ratio, by gel chromatography.  相似文献   

3.
Purified Pseudomonas cytochrome oxidase has been associated with asolectin liposomes by two different methods. Firstly, the enzyme was attached to liposomic membranes by adding it to a cholate-phospholipid dispersion and subsequently dialyzing the detergent out of suspension. In the second case the enzyme was adsorbed on the preformed liposomes when added to them after the dialysis.A stimulation of the cytochrome oxidase activity approximately twenty-fold was observed by the first method. In contrast, the activation was absent in the second type of preparation, indicating that interaction between the enzyme and phospholipids is very different in the two types of vesicles.The cholate-dialysis method for reconstitution of protein-phospholipid vesicles seems to lead to rather heterogeneous preparations. These can be further fractionated, not only according to their size but also to the protein/phospholipid ratio, by gel chromatography.  相似文献   

4.
The thermotropic behavior of the mitochondrial enzyme cytochrome c oxidase (EC 1.9.3.1) reconstituted in dimyristoylphosphatidylcholine (DMPC) vesicles has been studied by using high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. The incorporation of cytochrome c oxidase into the phospholipid bilayer perturbs the thermodynamic parameters associated with the lipid phase transition in a manner analogous to other integral membrane proteins: it reduces the enthalpy change, lowers the transition temperature, and reduces the cooperative behavior of the phospholipid molecules. Analysis of the dependence of the enthalpy change on the protein:lipid molar ratio indicates that cytochrome c oxidase prevents 99 +/- 5 lipid molecules from participating in the main gel-liquid-crystalline transition. These phospholipid molecules presumably remain in the same physical state below and above the transition temperature of the bulk lipid, thus providing a more or less constant microenvironment to the protein molecule. The effect of the phospholipid bilayer matrix on the thermodynamic stability of the cytochrome c oxidase complex was examined by high-sensitivity differential scanning calorimetry. Detergent (Tween 80)-solubilized cytochrome c oxidase undergoes a complex, irreversible thermal denaturation process centered at 56 degrees C and characterized by an enthalpy change of 550 +/- 50 kcal/mol of enzyme complex. Reconstitution of the cytochrome c oxidase complex into DMPC vesicles shifts the transition temperature upward to 63 degrees C, indicating that the phospholipid bilayer moiety stabilizes the native conformation of the enzyme. The lipid bilayer environment contributes approximately 10 kcal/mol to the free energy of stabilization of the enzyme complex. The thermal unfolding of cytochrome c oxidase is not a two-state process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The steady-state oxidation of ferrocytochrome c by cytochrome oxidase monitored spectrophotometrically showed that: (1) the kinetics were strictly biphasic with purified enzyme, while mitochondrial membrane-bound enzyme exhibited multiphasic kinetics with extended low affinity phases; (2) the TNmax for the highest affinity phase was as slow as 5-10 electron X s-1 for both preparations, while for the low affinity phases it was about 45 electron X s-1 for the purified enzyme and 150 electron X s-1 for the mitochondrial membrane-bound enzyme; (3) reconstitution of purified enzyme into acidic phospholipid vesicles partially repleted the extended low affinity phases, while reconstitution into uncharged vesicles had no effect.  相似文献   

6.
Abstract

Cytochrome c oxidase, the terminal electron acceptor of the respiratory chain of mitochondria, is an integral membrane protein. The bioenergetic properties of cytochrome oxidase can be studied only when the macromolecule is inserted in a phospholipid bilayer, either in situ or after reconstitution into liposomal membranes. Reintegration of purified cytochrome oxidase in liposomes allows quantitative tests of mechanistic hypothesis concerning the functional properties of the enzyme. Small unilamellar vesicles are prepared by sonication of purified soybean asolectin, and reconstitution of cytochrome oxidase in the bilayer is carried out according to the cholate/dialysis procedure. The proteoliposomes are shown to mimick the mitochondrial state of the enzyme in so far as liposomal cytochrome oxidase : a) displays the same vectorial orientation, the cytochrome c binding site being externally exposed, b) pumps protons in the physiological inside/outside direction, and c) is functionally controlled by the transmembrane electrochemical gradient, i.e. displays respiratory control.  相似文献   

7.
A preparation of reconstituted cytochrome oxidase vesicles in which the enzyme is oriented facing inwards (such that it cannot interact with external cytochrome c) is described. No oxidase activity is expressed by these vesicles unless they are disrupted, allowing influx of cytochrome c or exposure of the oxidase-binding site to the external medium. We have exploited this property to follow detergent-induced solubilization of the membrane, a technique which allows membrane disruption and enzyme activity to be monitored simultaneously. This protocol can be employed to investigate the properties and mechanism of action of detergents as is illustrated for several ionic and nonionic detergents.  相似文献   

8.
We report investigations into the direction of orientation of cytochrome c oxidase in reconstituted vesicles and the factors determining this. Measurement of the enzyme orientation employed two independent techniques: monitoring of the level of haem reduction by membrane-permeant and membrane-impermeant reagents and a kinetic analysis of the reduction of a spin label covalently bound to the oxidase surface. The method of preparation of the oxidase vesicles had a pronounced effect on the enzyme orientation and the two measurement techniques agreed in indicating that the proportion of mitochondrially oriented enzyme was approximately 85% and 50% for vesicles prepared by cholate dialysis and sonication respectively. Our results show that the membrane orientation of the oxidase is determined by interactions between the phospholipid bilayer and the portion of the enzyme embedded therein, as opposed to gross physical constraints. In particular, we demonstrate that the orientation of the oxidase is affected by the fluidity and surface charge of the membrane.  相似文献   

9.
Cytochrome oxidase is purified from rat liver and beef heart by affinity chromatography on a matrix of horse cytochrome c-Sepharose 4B. The success of this procedure, which employs a matrix previously found ineffective with beef or yeast oxidase, is attributed to thorough dispersion of the enzyme with nonionic detergent and a low density of cross-linking between the lysine residues of cytochrome c and the cyanogen bromide activated Sepharose. Beef heart oxidase is purified in one step from mitochondrial membranes solubilized with lauryl maltoside, yielding an enzyme of purity comparable to that obtained on a yeast cytochrome c matrix [Azzi, A., Bill, K., & Broger, C. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2447-2450]. Rat liver oxidase is prepared by hydroxyapatite and horse cytochrome c affinity chromatography in lauryl maltoside, yielding enzyme of high purity (12.5-13.5 nmol of heme a/mg of protein), high activity (TN = 270-400 s-1), and very low lipid content (1 mol of DPG and 1 mol of PI per mol of aa3). The activity of the enzyme is characterized by two kinetic phases, and electron transfer can be stimulated to maximal rates as high as 650 s-1 when supplemented with asolectin vesicles. The rat liver oxidase purified by this method does not contain the polypeptide designated as subunit III. Comparisons of the kinetic behavior of the enzyme in intact membranes, solubilized membranes, and the purified delipidated form reveal complex changes in kinetic parameters accompanying the changes in state and assay conditions, but do not support previous suggestions that subunit III is a critical factor in the binding of cytochrome c at the high-affinity site on oxidase or that cardiolipin is essential for the low-affinity interaction of cytochrome c. The purified rat liver oxidase retains the ability to exhibit respiratory control when reconstituted into phospholipid vesicles, providing definitive evidence that subunit III is not solely responsible for the ability of cytochrome oxidase to produce or respond to a membrane potential or proton gradient.  相似文献   

10.
The existence of a proton pump associated with bovine cytochrome c oxidase (EC 1.9.3.1) has over the last few years been a matter of considerable dispute. In an attempt to resolve some of the problems with the measuring system we have synthesized fluorescein-phosphatidylethanolamine which when reconstituted with cytochrome c oxidase into phospholipid vesicles provided a reliable indicator of the intravesicular pH. It was observed that cytochrome c oxidase catalyzed the abstraction of almost 2 protons from the intravesicular medium/molecule of ferrocytochrome c oxidized. In parallel experiments whereby the extravesicular pH was measured with an electrode it was found that the enzyme appeared to be responsible for the appearance of almost 1.0 proton/molecule of ferrocytochrome c oxidized. Taken together these data unequivocally demonstrate that cytochrome c oxidase behaves as a proton pump. Furthermore, the other proton which was abstracted is believed to be used for the process of the reduction of oxygen. Similar experiments were performed with a cytochrome c oxidase preparation which was devoid of subunit III. Under these circumstances the enzyme appeared to be unable to translocate protons across the vesicular membrane but was competent to abstract protons from the intravesicular medium for the reduction of oxygen.  相似文献   

11.
The activity of cytochrome oxidase reconstituted into phospholipid vesicles has been studied as a function of orthophosphate, ATP and inositol hexakisphosphate concentrations. The respiratory-control ratio was found to be quite sensitive to these compounds and was inversely related to the anion concentration. This effect is related to a phosphate-dependent decrease in the rate constant for ferrocytochrome c oxidation observed in the presence of ionophores. The data cannot be interpreted simply on the basis of ionic strength, which is known to limit cytochrome c binding to cytochrome oxidase, since cytochrome oxidase-containing vesicles responded differently to phosphate depending on the energization state of the phospholipid membrane.  相似文献   

12.
The syntheses of two new radioactive probes derived from cardiolipin and phosphatidylcholine are reported. These probes are derivatives of natural lipids and contain an amine-specific benzaldehyde in the head-group region. This functional group allows a choice of timing of the reaction (e.g., after equilibration and detergent removal) because an irreversible covalent bond is formed only upon the addition of reducing agent. These probes, as well as a benzaldehyde analogue of phosphatidic acid, and a water-soluble benzaldehyde reagent were covalently attached to bovine heart cytochrome c oxidase. After reconstitution into vesicles, the lipid-benzaldehyde probes selectively incorporated into the smaller polypeptides of the enzyme, while the remaining subunits (I-IV) exhibited little incorporation of label. The accessibility of amine groups labeled under the conditions used here was independent of the structural and charge differences between the benzaldehyde probes. This suggests that all three lipid probes react with polypeptides of the cytochrome c oxidase complex at general contact sites for membrane phospholipids. A water-soluble benzaldehyde reagent predominantly labeled subunits IV, Va, and Vb and polypeptides of VII-VIII. A comparison of these results facilitates a more refined view of the disposition of polypeptides of cytochrome c oxidase in respect to the lipid and aqueous phases.  相似文献   

13.
1. Cytochrome oxidase was incorporated into preformed liposomes containing phosphatidylserine. When confronted with a mixture of liposomes, some containing phosphatidylserine and some without it, the enzyme was incorporated only into the phosphatidylserine-containing liposomes. 2. The hydrophobic proteins of the oligomycin-sensitive ATPase incubated in the presence of a mixture of liposomes with and without cytochrome oxidase were preferentially incorporated into cytochrome oxidase-containing liposomes. This selectivity was abolished by either cytochrome c or ascorbate. 3. Cytochrome oxidase incubated in the presence of a mixture of liposomes with and without the hydrophobic proteins of the ATPase was preferentially incorporated into liposomes that did not contain the hydrophobic proteins. 4. Cytochrome oxidase and the oligomycin-sensitive ATPase were preferentially incorporated into pure liposomes over bacteriorhodopsin-containing vesicles. 5. Reduced coenzyme Q (QH2)-cytochrome c reductase was incorporated randomly when incubated in the presence of a mixture of pure liposomes and liposomes containing the hydrophobic proteins of the ATPase complex. 6. The significance of the incorporation procedure as a model for membrane biogenesis is discussed.  相似文献   

14.
The ionic-strength-dependences of the rate constants (log k plotted versus square root of 1) for oxidation of native and pyridoxal 5'-phosphate-modified cytochromes c by three different preparations of cytochrome c oxidase have complex non-linear character, which may be explained on the basis of present knowledge of the structure of the oxidase and the monomer-dimer equilibrium of the enzyme. The wave-type curve (with a minimum and a maximum) for oxidation of native cytochrome c by purified cytochrome c oxidase depleted of phospholipids may reflect consecutively inhibition of oxidase monomers (initial descending part), competition between this inhibition and dimer formation, resulting in increased activity (second part with positive slope), and finally inhibition of oxidase dimers (last descending part of the curve). The dependence of oxidation of native cytochrome c by cytochrome c oxidase reconstituted into phospholipid vesicles is a curve with a maximum, without the initial descending part described above. This may reflect the lack of pure monomers in the vesicles, where equilibrium is shifted to dimers even at low ionic strength. Subunit-III-depleted cytochrome c oxidase does not exhibit the maximum seen with the other two enzyme preparations. This may mean that removal of subunit III hinders dimer formation. The charge interactions of each of the cytochromes c (native or modified) with the three cytochrome c oxidase preparations are similar, as judged by the similar slopes of the linear dependences at I values above the optimal one. This shows that subunit III and the phospholipid membrane do not seem to be involved in the specific charge interaction of cytochrome c oxidase with cytochrome c.  相似文献   

15.
Aerobically grown Rhodobacter sphaeroides synthesizes a respiratory chain similar to that of eukaryotes. We describe the purification of the aa3-type cytochrome c oxidase of Rb. sphaeroides as a highly active (Vmax > or = 1800 s-1), three-subunit enzyme from isolated, washed cytoplasmic membranes by hydroxylapatite chromatography and anion exchange fast protein liquid chromatography. The purified oxidase exhibits biphasic kinetics of oxidation of mammalian cytochrome c, similar to mitochondrial oxidases, and pumps protons efficiently (H+/e- = 0.7) following reconstitution into phospholipid vesicles. A membrane-bound cytochrome c is associated with the aa3-type oxidase in situ, but is removed during purification. The EPR spectra of the Rb. sphaeroides enzyme suggest the presence of a strong hydrogen bond to one or both of the histidine ligands of heme a. In other respects, optical, EPR, and resonance Raman analyses of the metal centers and their protein environments demonstrate a close correspondence between the bacterial enzyme and the structurally more complex bovine cytochrome c oxidase. The results establish this bacterial oxidase as an excellent model system for the mammalian enzyme and provide the basis for site-directed mutational analysis of its energy transducing function.  相似文献   

16.
We have investigated ferrocytochrome c-induced proton ejection from reconstituted cytochrome c oxidase-containing vesicles using careful control of the number of enzyme turnovers. Ferrocytochrome c caused the appearance of protons at the vesicle exterior, and this could be abolished by using a protonophore. In addition, its decay was dependent on the permeability of the vesicle membranes to protons and the number of turnovers of the oxidase. These observations indicate that the ejection of protons was the result of genuine translocation. The possibility of this translocation occurring via a Mitchellian loop as a result of the presence of a reduced hydrogen carrier contaminating the enzyme was considered and excluded. Proton-translocating activity in this reconstituted system depended critically on the ratio of enzyme to lipid used in the reconstitution process and we propose a rationale to account for this. We conclude that our data provide strong support for the proposal that cytochrome c oxidase acts as a proton pump and that approx. 0.9 H+ is excluded per ferrocytochrome c molecule oxidized.  相似文献   

17.
When the carbon monoxide complex of fully reduced cytochrome c oxidase, reconstituted into liposomes, is mixed with oxygen-containing buffer, complex kinetic progress curves are observed. This pattern is seen irrespective of whether the oxidase used in reconstitution is the dimeric or monomeric (subunit III-depleted) enzyme. These findings are interpreted in the light of similar experiments on the detergent-solubilized enzyme reported by Gibson and Greenwood (Gibson, Q.H., and Greenwood, C. (1963) Biochem. J. 86, 541-554) and confirmed by ourselves. We conclude that reconstitution of monomeric (subunit III-less) enzyme yields, preferentially, vesicles containing more than one functional unit, possibly associated as dimers. This result is of significance to our understanding of the relationships between aggregation state and proton pumping capacity of cytochrome oxidase.  相似文献   

18.
T Nilsson  J Gelles  P M Li  S I Chan 《Biochemistry》1988,27(1):296-301
Cytochrome c oxidase in which the CuA site has been perturbed by extensive modification of the enzyme with the thiol reagent p-(hydroxymercuri)benzoate has been reconstituted into phospholipid vesicles. The reconstituted vesicles lack respiratory control, and the orientation of the enzyme in the vesicles is similar to that of the native cytochrome c oxidase. In the proton translocation assay, the vesicles containing the modified enzyme behave as if they are unusually permeable to protons. When the modified and native proteins were coreconstituted, a substantial portion of the latter became uncoupled as revealed by low respiratory control and low overall proton pumping activity. These results suggest that the modified enzyme catalyzes a passive transport of protons across the membrane. When milder conditions were used for the chemical modification, a majority of the thiols reacted while the CuA site remained largely intact. Reconstitution of such a partially modified cytochrome c oxidase produced vesicles with respiratory control and proton translocating activity close to those of reconstituted native enzyme. It thus appears that the appearance of a proton leak is related to the perturbation of the CuA site. These observations suggest that the structure of CuA may be related to the role of this site in the proton pumping machinery of cytochrome c oxidase.  相似文献   

19.
Pig blood neutrophils were briefly activated by various fatty acids and then fractionated into membrane vesicles with different NADPH oxidase activities. Treatment of these membranes with a detergent, octyl glucoside, resulted in a high yield of solubilized oxidase, which was subjected to isoelectric focusing on gels (pI 4.0-8.0). 1) A distinct band staining with NADPH-nitroblue tetrazolium focused at pI 5.0. The enzyme (pI 5.0) showed high specificity for NADPH and similar characteristics to the oxidase involved in the respiratory burst. 2) The enzyme was extracted from gel slices and analyzed. When measured promptly after its extraction, its NADPH oxidase activity was high, but there was apparent superoxide dismutase-insensitive cytochrome c reduction, probably due to direct electron transfer to the heme protein. However, it could produce superoxide anion (O2-) under some micelle conditions. 3) Therefore, the formation of the enzyme-substrate complex of yeast cytochrome c peroxidase was employed for the detection of H2O2. A fresh extract of stimulated cells catalyzed equimolar NADPH oxidation and H2O2 production of 306 and 300 nmol min-1 (mg protein)-1, respectively. The Km value of the enzyme for NADPH was 30 +/- 13 (S.D.) microM. The recovery of the extract (pI 5.0) was 19% of the total activity. 4) The enzyme extract contained 1.1-1.9 nmol of FAD/mg of protein, giving a turnover number of 300-600 min-1 in terms of O2- generation/FAD. No heme protein was found in the enzyme. The enzyme was mainly of 67-kDa molecular mass.  相似文献   

20.
A method for the purification of cytochrome c oxidase that is based on the affinity of this enzyme for polycations such as poly-L-lysine is described. When detergent extracts of bovine cardiac mitochondria were applied to either a poly-L-lysine-agarose or a lysine-Sepharose column at low ionic strength, cytochrome c oxidase was found to adhere tightly, whereas the bulk of the proteins were eluted by washing with the same buffer. The cytochrome c oxidase was eluted by application of a linear potassium chloride gradient to the columns. The resulting enzyme was identical to that obtained by more traditional purification methods in terms of its subunit composition, optical and resonance Raman spectra, and cytochrome c oxidizing activity. When detergent extracts of spheroplasts from Paracoccus denitrificans were applied to these columns, the cytochrome c oxidase from this organism was also found to adhere tightly. Thus this purification method appears applicable to both prokaryotic and eukaryotic forms of the enzyme. The advantages of this new purification method are that it is less labor intensive than the traditional procedure and less expensive than methods based on cytochrome c-affinity chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号