首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heteronuclear NMR spectroscopy was performed to determine the solution structure of (15)N-labeled ferrocytochrome c(3) from Desulfovibrio vulgaris Miyazaki F (DvMF). Although the folding of the reduced cytochrome c(3) in solution was similar to that of the oxidized one in the crystal structure, the region involving hemes 1 and 2 was different. The redox-coupled conformational change is consistent with the reported solution structure of D. vulgaris Hildenborough ferrocytochrome c(3), but is different from those of other cytochromes c(3). The former is homologous with DvMF cytochrome c(3) in amino acid sequence. Small displacements of hemes 1 and 2 relative to hemes 3 and 4 were observed. This observation is consistent with the unusual behavior of the 2(1)CH(3) signal of heme 3 reported previously. As shown by the (15)N relaxation parameters of the backbone, a region between hemes 1 and 2 has more flexibility than the other regions. The results of this work strongly suggest that the cooperative reduction of hemes 1 and 2 is based on the conformational changes of the C-13 propionate of heme 1 and the aromatic ring of Tyr43, and the interaction between His34 and His 35 through covalent and coordination bonds.  相似文献   

2.
Takayama Y  Harada E  Kobayashi R  Ozawa K  Akutsu H 《Biochemistry》2004,43(34):10859-10866
The roles of aromatic residues in redox regulation of cytochrome c(3) were investigated by site-directed mutagenesis at every aromatic residue except for axial ligands (Phe20, Tyr43, Tyr65, Tyr66, His67, and Phe76). The mutations at Phe20 induced large chemical shift changes in the NMR signals for hemes 1 and 3, and large changes in the microscopic redox potentials of hemes 1 and 3. The NMR signals of the axial ligands of hemes 1 and 3 were also affected. Analysis of the nature of the mutations revealed that a hydrophobic environment and aromaticity are important for the reduction of the redox potentials of hemes 1 and 3, respectively. There was also a global effect. The replacement of Tyr66 with leucine induced chemical shift changes for heme 4, and changes in the microscopic redox potentials of heme 4. The mutations of Tyr65 induced changes in the chemical shifts and microscopic redox potentials for every heme, suggesting that Tyr65 stabilizes the global conformation, thereby reducing the redox potentials. In contrast, although the mutations of His67 and Phe76 caused chemical shift changes for heme 2, they did not affect its redox potentials, showing these residues are not important. All noncoordinated aromatic residues conserved in the cytochrome c(3) subfamily with heme binding motifs CXXCH, CXXXXCH, CXXCH, and CXXXXCH (Phe20, Tyr43, and Tyr66) are involved in the pi-pi interaction, which causes a decrease in the redox potential of the interacting heme. The global effect can be attributed to either direct or indirect interactions among the four hemes in the cyclic architecture.  相似文献   

3.
Frederik A.J. Rotsaert 《BBA》2008,1777(3):239-249
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the bH heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function.  相似文献   

4.
Contrary to most heme proteins, ferrous cytochrome c does not bind ligands such as cyanide and CO. In order to quantify this observation, the redox potential of the ferric/ferrous cytochrome c-cyanide redox couple was determined for the first time by cyclic voltammetry. Its E0' was -240 mV versus SHE, equivalent to -23.2 kJ/mol. The entropy of reaction for the reduction of the cyanide complex was also determined. From a thermodynamic cycle that included this new value for the cyt c cyanide complex E0', the binding constant of cyanide to the reduced protein was estimated to be 4.7 x 10(-3) L M(-1) or 13.4 kJ/mol (3.2 kcal/mol), which is 48.1 kJ/mol (11.5 kcal/mol) less favorable than the binding of cyanide to ferricytochrome c. For coordination of cyanide to ferrocytochrome c, the entropy change was earlier experimentally evaluated as 92.4 J mol(-1) K(-1) (22.1 e.u.) at 25 K, and the enthalpy change for the same net reaction was calculated to be 41.0 kJ/mol (9.8 kcal/mol). By taking these results into account, it was discovered that the major obstacle to cyanide coordination to ferrocytochrome c is enthalpic, due to the greater compactness of the reduced molecule or, alternatively, to a lower rate of conformational fluctuation caused by solvation, electrostatic, and structural factors. The biophysical consequences of the large difference in the stabilities of the closed crevice structures are discussed.  相似文献   

5.
The chemical denaturation of Pseudomonas aeruginosa cytochrome c(551) variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0-4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond formation with heme 17-propionate at pH 5.0, but less efficiently at pH 3.6, because the propionate is deprotonated at the higher pH. Our results provide an insight into a stabilization strategy for heme proteins involving variation of the heme electronic state and introduction of appropriate mutations.  相似文献   

6.
Cen X  Yu L  Yu CA 《FEBS letters》2008,582(4):523-526
The key step of the "protonmotive Q-cycle" mechanism for cytochrome bc1 complex is the bifurcated oxidation of ubiquinol at the Qp site. ISP is reduced when its head domain is at the b-position and subsequent move to the c1 position, to reduce cytochrome c1, upon protein conformational changes caused by the electron transfer from cytochrome b(L) to b(H). Results of analyses of the inhibitory efficacy and the binding affinity, determined by isothermal titration calorimetry, of Pm and Pf, on different redox states of cytochrome bc1 complexes, confirm this speculation. Pm inhibitor has a higher affinity and better efficacy with the cytochrome b(H) reduced complex and Pf binds better and has a higher efficacy with the ISP reduced complex.  相似文献   

7.
The alternative low-spin states of Fe(3+) and Fe(2+) cytochrome c induced by SDS or AOT/hexane reverse micelles exhibited the heme group in a less rhombic symmetry and were characterized by electron paramagnetic resonance, UV-visible, CD, magnetic CD, fluorescence, and Raman resonance. Consistent with the replacement of Met(80) by another strong field ligand at the sixth heme iron coordination position, Fe(3+) ALSScytc exhibited 1-nm Soret band blue shift and epsilon enhancement accompanied by disappearance of the 695-nm charge transfer band. The Raman resonance, CD, and magnetic CD spectra of Fe(3+) and Fe(2+) ALSScytc exhibited significant changes suggestive of alterations in the heme iron microenvironment and conformation and should not be assigned to unfold because the Trp(59) fluorescence remained quenched by the neighboring heme group. ALSScytc was obtained with His(33) and His(26) carboxyethoxylated horse cytochrome c and with tuna cytochrome c (His(33) replaced by Asn) pointing out Lys(79) as the probable heme iron ligand. Fe(3+) ALSScytc retained the capacity to cleave tert-butylhydroperoxide and to be reduced by dithiothreitol and diphenylacetaldehyde but not by ascorbate. Compatible with a more open heme crevice, ALSScytc exhibited a redox potential approximately 200 mV lower than the wild-type protein (+220 mV) and was more susceptible to the attack of free radicals.  相似文献   

8.
A triad of tyrosine residues (Y152-154) in the cytochrome c(1) subunit (C1) of the Rhodobacter capsulatus cytochrome bc(1) complex (BC1) is ideally positioned to interact with cytochrome c(2) (C2). Mutational analysis of these three tyrosines showed that, of the three, Y154 is the most important, since its mutation to alanine resulted in significantly reduced levels, destabilization, and inactivation of BC1. A second-site revertant of this mutant that regained photosynthetic capacity was found to have acquired two further mutations-A181T and A200V. The Y152Q mutation did not change the spectral or electrochemical properties of C1, and showed wild-type enzymatic C2 reduction rates, indicating that this mutation did not introduce major structural changes in C1 nor affect overall activity. Mutations Y153Q and Y153A, on the other hand, clearly affect the redox properties of C1 (e.g. by lowering the midpoint potential as much as 117mV in Y153Q) and the activity by 90% and 50%, respectively. A more conservative Y153F mutant on the other hand, behaves similarly to wild-type. This underscores the importance of an aromatic residue at position Y153, presumably to maintain close packing with P184, which modeling indicates is likely to stabilize the sixth heme ligand conformation.  相似文献   

9.
Two synthetic genes coding for human and Arabidopsis cytochrome c, respectively, have been designed and constructed, and the recombinant proteins have been over-expressed in Escherichia coli cells. Thus a comparative analysis of the two heme proteins, including horse cytochrome c as a reference, has been performed. In addition to their physico-chemical properties, the redox behavior of the three proteins has been analyzed by following the kinetics of both their reduction by flavin semiquinones (lumiflavin, riboflavin, and FMN) and oxidation by cytochrome c oxidase. The resulting data indicate that the accessibility and electrostatic charge of the active site do not differ in a significant way among the three proteins, but human cytochrome c exhibits some intriguing differences when interacting with cytochrome c oxidase that could be related to the amino acid changes underwent by the latter along evolution.  相似文献   

10.
Cellobiose dehydrogenase (CDH) is an extracellular flavocytochrome containing flavin and b-type heme, and plays a key role in cellulose degradation by filamentous fungi. To investigate intermolecular electron transfer from CDH to cytochrome c, Phe166, which is located in the cytochrome domain and approaches one of propionates of heme, was mutated to Tyr, and the thermodynamic and kinetic properties of the mutant (F166Y) were compared with those of the wild-type (WT) enzyme. The mid-point potential of heme in F166Y was measured by cyclic voltammetry, and was estimated to be 25 mV lower than that of WT at pH 4.0. Although presteady-state reduction of flavin was not affected by the mutation, the rate of subsequent electron transfer from flavin to heme was halved in F166Y. When WT or F166Y was reduced with cellobiose and then mixed with cytochrome c, heme re-oxidation and cytochrome c reduction occurred synchronously, suggesting that the initial electron is transferred from reduced heme to cytochrome c. Moreover, in both enzymes the observed rate of the initial phase of cytochrome c reduction was concentration dependent, whereas the second phase of cytochrome c reduction was dependent on the rate of electron transfer from flavin to heme, but not on the cytochrome c concentration. In addition, the electron transfer rate from flavin to heme was identical to the steady-state reduction rate of cytochrome c in both WT and F166Y. These results clearly indicate that the first and second electrons of two-electron-reduced CDH are both transferred via heme, and that the redox reaction of CDH involves an electron-transfer chain mechanism in cytochrome c reduction.  相似文献   

11.
M  rten K. F. Wikstr  m  Jan A. Berden 《BBA》1972,283(3):403-420
1. The effect of oxidizing equivalents on the redox state of cytochrome b in the presence of antimycin has been studied in the presence and absence of various redox mediators.

2. The antimycin-induced extra reduction of cytochrome b is always dependent on the initial presence of an oxidant such as oxygen. After removal of the oxidant this effect remains or is partially (under some conditions even completely) abolished depending on the redox potential of the substrate used and the leak through the antimycin-inhibited site.

3. The increased reduction of cytochrome b induced by oxidant in the presence of antimycin involves all three spectroscopically resolvable b components (b-562, b-566 and b-558.

4. Redox mediators with an actual redox potential of less than 100–170 mV cause the oxidation of cytochrome b reduced under the influence of antimycin and oxidant.

5. Redox titrations of cytochrome b with the succinate/fumarate couple were performed aerobically in the presence of cyanide. In the presence of antimycin two b components are separated potentiometrically, one with an apparent midpoint potential above 80 mV (at pH 7.0), outside the range of the succinate/fumurate couple, and one with an apparent midpoint potential of 40 mV and an n value of 2. In the absence of antimycin cytochrome b titrates essentially as one species with a midpoint potential of 39 mV (at pH 7.0) and n = 1.14.

6. The increased reducibility of cytochrome b induced by antimycin plus oxidant is considered to be the result of two effects: inhibition of oxidation of ferrocytochrome b by ferricytochrome c1 (the effect of antimycin), and oxidation of the semiquinone form of a two-equivalent redox couple such as ubiquinone/ubiquinol by the added oxidant, leading to a decreased redox potential of the QH2/QH couple and reduction of cytochrome b.  相似文献   


12.
To understand the determinants of redox potential and protein stability in c-type cytochromes, we have characterized two mutations to a highly conserved tyrosine group, tyrosine-75, of Rhodobacter capsulatus cytochrome c2. Mutant Y75F was designed to test the importance of the tyrosine hydroxyl group to the typically high redox potentials of the cytochromes c2 while maintaining a hydrophobic core. Mutant Y75C was designed to test the importance of a large hydrophobic group to redox potential by replacing an aromatic group with a small nonpolar group. Both mutants exhibit spectral and redox properties indicating that their heme environments have been perturbed. The kinetics of reduction by lumiflavin semiquinone and photooxidation by Rhodobacter sphaeroides photosynthetic reaction centers have been used to demonstrate that both mutants are structurally analogous to the wild-type protein at the active site of electron transfer. Different degrees of relative stability of the mutants toward a denaturant have been observed with the order being Y75C less than wt less than Y75F in the oxidized state and Y75C less than Y75F less than wt in the reduced state. These results are discussed in light of the recent structure determination of the R. capsulatus wild-type ferrocytochrome c2 to suggest that R. capsulatus tyrosine-75, or its equivalent in other species, is part of a conserved hydrogen-bonding network which plays an important role in maintaining high redox potentials and protein stability of cytochromes c in general.  相似文献   

13.
Phanerochaete chrysosporium cellobiose oxidoreductase (CBOR) comprises two redox domains, one containing flavin adenine dinucleotide (FAD) and the other protoheme. It reduces both two-electron acceptors, including molecular oxygen, and one-electron acceptors, including transition metal complexes and cytochrome c. If the latter reacts with the flavin, the reduced heme b acts merely as a redox buffer, but if with the b heme, enzyme action involves a true electron transfer chain. Intact CBOR fully reduced with cellobiose, CBOR partially reduced by ascorbate, and isolated ascorbate-reduced heme domain, all transfer electrons at similar rates to cytochrome c. Reduction of cationic one-electron acceptors via the heme group supports an electron transfer chain model. Analogous reactions with natural one-electron acceptors can promote Fenton chemistry, which may explain evolutionary retention of the heme domain and the enzyme's unique character among secreted sugar dehydrogenases.  相似文献   

14.
Fago A  Mathews AJ  Moens L  Dewilde S  Brittain T 《FEBS letters》2006,580(20):4884-4888
Previously identified, potentially neuroprotective reactions of neuroglobin require the existence of yet unknown redox partners. We show here that the reduction of ferric neuroglobin by cytochrome b(5) is relatively slow (k=6 x 10(2)M(-1)s(-1) at pH 7.0) and thus is unlikely to be of physiological significance. In contrast, the reaction between ferrous neuroglobin and ferric cytochrome c is very rapid (k=2 x 10(7)M(-1)s(-1)) with an apparent overall equilibrium constant of 1 microM. Based on this data we propose that ferrous neuroglobin may well play a role in preventing apoptosis.  相似文献   

15.
A native structure of the cytochrome b(6)f complex with improved resolution was obtained from crystals of the complex grown in the presence of divalent cadmium. Two Cd(2+) binding sites with different occupancy were determined: (i) a higher affinity site, Cd1, which bridges His143 of cytochrome f and the acidic residue, Glu75, of cyt b(6); in addition, Cd1 is coordinated by 1-2 H(2)O or 1-2 Cl(-); (ii) a second site, Cd2, of lower affinity for which three identified ligands are Asp58 (subunit IV), Glu3 (PetG subunit) and Glu4 (PetM subunit). Binding sites of quinone analogue inhibitors were sought to map the pathway of transfer of the lipophilic quinone across the b(6)f complex and to define the function of the novel heme c(n). Two sites were found for the chromone ring of the tridecyl-stigmatellin (TDS) quinone analogue inhibitor, one near the p-side [2Fe-2S] cluster. A second TDS site was found on the n-side of the complex facing the quinone exchange cavity as an axial ligand of heme c(n). A similar binding site proximal to heme c(n) was found for the n-side inhibitor, NQNO. Binding of these inhibitors required their addition to the complex before lipid used to facilitate crystallization. The similar binding of NQNO and TDS as axial ligands to heme c(n) implies that this heme utilizes plastoquinone as a natural ligand, thus defining an electron transfer complex consisting of hemes b(n), c(n), and PQ, and the pathway of n-side reduction of the PQ pool. The NQNO binding site explains several effects associated with its inhibitory action: the negative shift in heme c(n) midpoint potential, the increased amplitude of light-induced heme b(n) reduction, and an altered EPR spectrum attributed to interaction between hemes c(n) and b(n). A decreased extent of heme c(n) reduction by reduced ferredoxin in the presence of NQNO allows observation of the heme c(n) Soret band in a chemical difference spectrum.  相似文献   

16.
17.
Cytochrome c6A is a unique dithio-cytochrome present in land plants and some green algae. Its sequence and occurrence in the thylakoid lumen suggest that it is derived from cytochrome c6, which functions in photosynthetic electron transfer between the cytochrome b6f complex and photosystem I. Its known properties, however, and a strong indication that the disulfide group is not purely structural, indicate that it has a different, unidentified function. To help in the elucidation of this function the crystal structure of cytochrome c6A from Arabidopsis thaliana has been determined in the two redox states of the heme group, at resolutions of 1.2 A (ferric) and 1.4 A (ferrous). These two structures were virtually identical, leading to the functionally important conclusion that the heme and disulfide groups do not communicate by conformational change. They also show, however, that electron transfer between the reduced disulfide and the heme is feasible. We therefore suggest that the role of cytochrome c6A is to use its disulfide group to oxidize dithiol/disulfide groups of other proteins of the thylakoid lumen, followed by internal electron transfer from the dithiol to the heme, and re-oxidation of the heme by another thylakoid oxidant. Consistent with this model, we found a rapid electron transfer between ferro-cytochrome c6A and plastocyanin, with a second-order rate constant, k2=1.2 x 10(7) M(-1) s(-1).  相似文献   

18.
Tetraheme cytochrome c 3 (cyt c 3) exhibits extremely low reduction potentials and unique properties. Since axial ligands should be the most important factors for this protein, every axial histidine of Desulfovibrio vulgaris Miyazaki F cyt c 3 was replaced with methionine, one by one. On mutation at the fifth ligand, the relevant heme could not be linked to the polypeptide, revealing the essential role of the fifth histidine in heme linking. The fifth histidine is the key residue in the structure formation and redox regulation of a c-type cytochrome. A crystal structure has been obtained for only H25M cyt c 3. The overall structure was not affected by the mutation except for the sixth methionine coordination at heme 3. NMR spectra revealed that each mutated methionine is coordinated to the sixth site of the relevant heme in the reduced state, while ligand conversion takes place at hemes 1 and 4 during oxidation at pH 7. The replacement of the sixth ligand with methionine caused an increase in the reduction potential of the mutated heme of 222-244 mV. The midpoint potential of a triheme H52M cyt c 3 is higher than that of the wild type by approximately 50 mV, suggesting a contribution of the tetraheme architecture to the lowering of the reduction potentials. The hydrogen bonding of Thr24 with an axial ligand induces a decrease in reduction potential of approximately 50 mV. In conclusion, the bis-histidine coordination is strategically essential for the structure formation and the extremely low reduction potential of cyt c 3.  相似文献   

19.
20.
Structural analysis of the bc(1) complex suggests that the extra membrane domain of iron-sulfur protein (ISP) undergoes substantial movement during the catalytic cycle. Binding of Qo site inhibitors to this complex affects the mobility of ISP. Taking advantage of the difference in the pH dependence of the redox midpoint potentials of cytochrome c(1) and ISP, we have measured electron transfer between the [2Fe-2S] cluster and heme c(1) in native and inhibitor-treated partially reduced cytochrome bc(1) complexes. The rate of the pH-induced cytochrome c(1) reduction can be estimated by conventional stopped-flow techniques (t1/2, 1-2 ms), whereas the rate of cytochrome c(1) oxidation is too high for stopped-flow measurement. These results suggest that oxidized ISP has a higher mobility than reduced ISP and that the movement of reduced ISP may require an energy input from another component. In the 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT)-inhibited complex, the rate of cytochrome c(1) reduction is greatly decreased to a t1/2 of approximately 2.8 s. An even lower rate is observed with the stigmatellin-treated complex. These results support the idea that UHDBT and stigmatellin arrest the [2Fe-2S] cluster at a fixed position, 31 A from heme c(1), making electron transfer very slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号