首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nagase T  Nishio S  Itoh T 《Plasmid》2008,59(1):36-44
Translation initiation of mRNA encoding the plasmid-specified initiator protein (Rep) required for initiation of the ColE2 plasmid DNA replication is fairly efficient in Escherichia coli despite the absence of a canonical Shine-Dalgarno sequence. Although a GA cluster sequence exists upstream the initiation codon, its activity as the SD sequence has been shown to be very inefficient. Deletion analyses have shown that there are sequences important for the Rep translation in the regions upstream the GA cluster sequence and downstream the initiation codon. To further define regions important for translation of the Rep mRNA, a set of the ColE2 rep genes bearing single-base substitution mutations in the coding region near the initiation codon was generated and their translation activities examined. We showed that translation of the Rep mRNA was reduced by some of these mutations in a region ranging at least 70 nucleotides from the initiation codon in the coding region, indicating the presence of translation enhancer(s) outside the translation initiation region which is covered by the ribosome bound to the initiation codon. Some of them seem to be essential and specific for translation of the ColE2 Rep mRNA due to the absence of a canonical SD sequence.  相似文献   

2.
In the plasmid pUC8ksgA7, the coding region of the ksgA gene is preceded by the lac promoter (Plac) and a small open reading frame (ORF). This ORF of 15 codons is composed of nucleotides derived from the lacZ gene, a multiple cloning site and the ksgA gene itself. The reading frame begins with the ATG initiation codon of lacZ and ends a few nucleotides beyond the ATG start codon of ksgA. The ksgA gene is not preceded by a Shine-Dalgarno (SD) signal. Cells transformed with pUC8ksgA7 produce active methylase, the product of the ksgA gene. Introduction of an in-phase TAA stop codon in the small ORF abolishes methylase production in transformed cells. On the plasmid pUC8ksgA5, which contains the entire ksgA region, the promoter of the ksgA gene was found to reside in a 380 base pair Bgl1-Pvu2 restriction fragment, partly overlapping the ksgA gene, by two independent methods. Cloning of this fragment in front of the galK gene in plasmid pKO1 stimulates galactokinase activity in transformants and its insertion into the expression vector pKL203 makes beta-galactosidase synthesis independent of the presence of Plac. The sequence of the Bgl1-Pvu2 fragment was determined and a putative promoter sequence identified. An SD signal could not be distinguished at a proper distance upstream from the ksgA start codon. Instead, an ORF of 13 codons starting with ATG in tandem with an SD signal and ending 4 codons ahead of the ksgA gene was identified. This suggests that translation of the ORF is required for expression of the ksgA gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
H Chen  M Bjerknes  R Kumar    E Jay 《Nucleic acids research》1994,22(23):4953-4957
The prokaryotic mRNA ribosome binding site (RBS) usually contains part or all of a polypurine domain UAAGGAGGU known as the Shine-Dalgarno (SD) sequence found just 5' to the translation initiation codon. It is now clear that the SD sequence is important for identification of the translation initiation site on the mRNA by the ribosome, and that as a result, the spacing between the SD and the initiation codon strongly affects translational efficiency (1). It is not as clear, however, whether there is a unique optimal spacing. Complications involving the definition of the spacing as well as secondary structures have obscured matters. We thus undertook a systematic study by inserting two series of synthetic RBSs of varying spacing and SD sequence into a plasmid vector containing the chloramphenicol acetyltransferase gene. Care was taken not to introduce any secondary structure. Measurements of protein expression demonstrated an optimal aligned spacing of 5 nt for both series. Since aligned spacing corresponds naturally to the spacing between the 3'-end of the 16S rRNA and the P-site, we conclude that there is a unique optimal aligned SD-AUG spacing in the absence of other complicating issues.  相似文献   

4.
Initiation of translation in Escherichia coli and related eubacteria involves well-defined interactions between a conserved Shine-Dalgarno (SD) sequence immediately upstream of the initiation codon in the mRNA leader and an equally conserved anti-SD sequence at the 3′ end of the 16S rRNA. SD-like sequences found in the leaders of many, but not all, mRNAs from cyanobacteria and chloroplasts are hypervariable in location, size, and base composition compared to those in E. coli, while anti-SD sequences in the respective 16S rRNAs remain highly conserved. We have examined the function of the SD-like sequences found in the leaders of four chloroplast genes of the green alga Chlamydomonas reinhardtii using replacement mutagenesis to eliminate complementarity with the anti-SD sequences and insertion of canonical SD sequences (GGAGG) at positions ?9 to ?5 relative to the initiation codon. Promoter-leader regions of the atpB, atpE, rps4, and rps7 genes representing the diversity of chloroplast SD-like sequences were fused to aadA and uidA reporter genes encoding spectinomycin resistance and GUS activity respectively. Analysis of chloroplast transformants of C. reinhardtii and transformants of E. coli carrying the wild-type and mutant reporter constructs revealed that mutagenic replacement of the putative SD sequences had no effect on the expression of either the aadA or uidA reporter genes. Chloroplast transformants with the canonical SD sequence also showed no differences in reporter gene expression, whereas expression of the reporter genes was increased by 10 to 30% in the E. coli transformants. Collectively our results suggest that even though SD-dependent initiation predominates in E. coli, this bacterium also has the capacity to initiate translation by an SD-independent mechanism. In contrast, plant chloroplasts, and very probably their cyanobacterial ancestors, appear to have adopted the SD-independent mechanism for translational initiation of most mRNAs.  相似文献   

5.
Initiation of translation in Escherichia coli and related eubacteria involves well-defined interactions between a conserved Shine-Dalgarno (SD) sequence immediately upstream of the initiation codon in the mRNA leader and an equally conserved anti-SD sequence at the 3′ end of the 16S rRNA. SD-like sequences found in the leaders of many, but not all, mRNAs from cyanobacteria and chloroplasts are hypervariable in location, size, and base composition compared to those in E. coli, while anti-SD sequences in the respective 16S rRNAs remain highly conserved. We have examined the function of the SD-like sequences found in the leaders of four chloroplast genes of the green alga Chlamydomonas reinhardtii using replacement mutagenesis to eliminate complementarity with the anti-SD sequences and insertion of canonical SD sequences (GGAGG) at positions −9 to −5 relative to the initiation codon. Promoter-leader regions of the atpB, atpE, rps4, and rps7 genes representing the diversity of chloroplast SD-like sequences were fused to aadA and uidA reporter genes encoding spectinomycin resistance and GUS activity respectively. Analysis of chloroplast transformants of C. reinhardtii and transformants of E. coli carrying the wild-type and mutant reporter constructs revealed that mutagenic replacement of the putative SD sequences had no effect on the expression of either the aadA or uidA reporter genes. Chloroplast transformants with the canonical SD sequence also showed no differences in reporter gene expression, whereas expression of the reporter genes was increased by 10 to 30% in the E. coli transformants. Collectively our results suggest that even though SD-dependent initiation predominates in E. coli, this bacterium also has the capacity to initiate translation by an SD-independent mechanism. In contrast, plant chloroplasts, and very probably their cyanobacterial ancestors, appear to have adopted the SD-independent mechanism for translational initiation of most mRNAs. Received: 8 July 1997 / Accepted: 9 September 1997  相似文献   

6.
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno--independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno--independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site.  相似文献   

7.
8.
The translational roles of the Shine-Dalgarno sequence, the initiation codon, the space between them, and the second codon have been studied. The Shine-Dalgarno sequence UAAGGAGG initiated translation roughly four times more efficiently than did the shorter AAGGA sequence. Each Shine-Dalgarno sequence required a minimum distance to the initiation codon in order to drive translation; spacing, however, could be rather long. Initiation at AUG was more efficient than at GUG or UUG at each spacing examined; initiation at GUG was only slightly better than UUG. Translation was also affected by residues 3' to the initiation codon. The second codon can influence the rate of initiation, with the magnitude depending on the initiation codon. The data are consistent with a simple kinetic model in which a variety of rate constants contribute to the process of translation initiation.  相似文献   

9.
The Shine-Dalgarno (SD+: 5'-AAGGAGG-3') sequence anchors the mRNA by base pairing to the 16S rRNA in the small ribosomal subunit during translation initiation. We have here compared how an SD+ sequence influences gene expression, if located upstream or downstream of an initiation codon. The positive effect of an upstream SD+ is confirmed. A downstream SD+ gives decreased gene expression. This effect is also valid for appropriately modified natural Escherichia coli genes. If an SD+ is placed between two potential initiation codons, initiation takes place predominantly at the second start site. The first start site is activated if the distance between this site and the downstream SD+ is enlarged and/or if the second start site is weakened. Upstream initiation is eliminated if a stable stem-loop structure is placed between this SD+ and the upstream start site. The results suggest that the two start sites compete for ribosomes that bind to an SD+ located between them. A minor positive contribution to upstream initiation resulting from 3' to 5' ribosomal diffusion along the mRNA is suggested. Analysis of the E. coli K12 genome suggests that the SD+ or SD-like sequences are systematically avoided in the early coding region suggesting an evolutionary significance.  相似文献   

10.
Individual mutations which affected each of the two Shine-Dalgarno sequences at the 5' untranslated region of the gltB gene of Escherichia coli were characterized. They were isolated in plasmids carrying a gltB'-'lacZ protein fusion preceded by the regulatory region of the gltBDF operon. Subcloning and nucleotide sequencing of approximately 1,206 bp of DNA encompassing the gltBDF regulatory region showed that the mutations affected the first base at each of the two identical Shine-Dalgarno sequences, SD1 and SD2, located 40 and 8 bases, respectively, upstream from the putative gltB open reading frame. Only mutation gltB2r227, an adenine in place of a guanine, affecting the first base of SD2, lowered beta-galactosidase expression significantly, i.e., about fivefold. The results suggest that SD2 is the preferred functional site at which ribosomes initiate gltB mRNA translation.  相似文献   

11.
The fate of ribosomes between termination and initiation during protein synthesis is very basic, yet poorly understood. Here we found that translational reinitiation of the alkaline phosphatase gene occurs in Escherichia coli from an internal methionine codon when the authentic translation is prematurely terminated at a nonsense codon that is within seven codons upstream of the reinitiation codon (which we refer to as "reinitiation window"). Changing the reading frame downstream of the stop codon did not abolish the reinitiation, while inactivating the upstream initiation codon abolished the reinitiation. Moreover, depletion of the ribosome recycling factor (RRF), which disassembles posttermination ribosomes in conjunction with elongation factor G, did not influence the observed reinitiation. These findings suggest that posttermination ribosomes can undergo a transient idling state ready to reinitiate protein synthesis even in the absence of the Shine-Dalgarno (SD) sequence within the reinitiation window by evading disengagement from the mRNA.  相似文献   

12.
The region controlling translation of the cat gene, which codes for chloramphenicol acetyltransferase, has been varied structurally in a series of plasmids that place the gene under control of the lac promoter. These plasmid constructs have enabled study of the structural features that affect the efficiency of mRNA translation. Altering the potential for secondary structure formation within the translation control region caused a tenfold variation in the synthesis of CAT enzyme, whereas varying the distance between the Shine-Dalgarno sequence (SD) and the translation start codon from 7 to 13 bases did not significantly affect the yield of CAT. If the SD was situated in a region of mRNA that is capable of base pairing, the efficiency of translation was decreased; however, the translation start codon, AUG, can initiate translation efficiently even when located in a segment capable of duplex formation. Overlapping of the cat translation control region by translation initiated upstream markedly affected initiation of translation within the cat gene: out-of-frame overlapping translation reduced CAT production by 90%; in-frame overlapping translation prevented detectable initiation of protein synthesis at the cat gene translation start codon, and yielded only fusion proteins. The enzymatic activity of such proteins was influenced by the length of the adventitious peptide segment added to the amino-terminus of the CAT polypeptide.  相似文献   

13.
S Loechel  J M Inamine    P C Hu 《Nucleic acids research》1991,19(24):6905-6911
The tuf gene of Mycoplasma genitalium uses a signal other than a Shine-Dalgarno sequence to promote translation initiation. We have inserted the translation initiation region of this gene in front of the Escherichia coli lacZ gene and shown that it is recognized by the translational machinery of E. coli; the signal operates in vivo at roughly the same efficiency as a synthetic Shine-Dalgarno sequence. The M. genitalium sequence was also used to replace the native translation initiation region of the cat gene. When assayed in E. coli, the M. genitalium sequence is equivalent to a Shine-Dalgarno sequence in stimulating translation of this mRNA also. Site-directed mutagenesis enabled us to identify some of the bases that comprise the functional sequence. We propose that the sequence UUAACAACAU functions as a ribosome binding site by annealing to nucleotides 1082-1093 of the E. coli 16S rRNA. The activity of this sequence is enhanced when it is present in the loop of a stem-and-loop structure. Additional sequences both upstream and downstream of the initiation codon are also involved, but their role has not been elucidated.  相似文献   

14.
Secondary structure of the mRNA in the translational initiation region is an important determinant of translation efficiency. However, the secondary structures that enhance or facilitate translation initiation are rare. We have previously proposed that such structure may exist in the case of bacteriophage T4 gene 25 translational initiation region, which contains three potential Shine-Dalgarno sequences (SD1, SD2, and SD3) with a spacing of 8, 17, and 27 nucleotides from the initiation codon of this gene, respectively. We now present results that clearly demonstrate the existence of a hairpin structure that includes SD1 and SD2 sequences and brings the SD3, the most typical of these Shine-Dalgarno sequences, to a favourable spacing with the initiation codon of gene 25.Using a phage T7 expression system, we show that mutations that prevent the formation of hairpin structure or eliminate the SD3 sequence result in a decreased level of gp25 synthesis. Double mutation in base-pair V restores the level of gene 25 expression that was decreased by either of the two mutations (C-to-G and G-to-C) alone, as predicted by an effect attributable to mRNA secondary structure. We introduced the mutations into the bacteriophage T4 by plasmid-phage recombination. Changes in the plaque and burst sizes of T4 mutants, carrying single and double mutations in the translational initiation region of gene 25, strongly suggest that the predicted mRNA secondary structure controls (enhances) the level of gene 25 expression in vivo. Hybridization of total cellular RNA with a gene 25 specific probe indicated that secondary structure or mutations in the translational initiation region do not notably affect the 25 mRNA stability. Immunoblot analysis of gp25 in Escherichia coli cells infected by T4 mutants showed that mRNA secondary structure increases the level of gp25 synthesis by three- to fourfold. Since the secondary structure increases the level of gp25 synthesis and does not affect mRNA stability, we conclude that this structure enhances translation initiation. We discuss some features of two secondary structures in the translational initiation regions of T4 genes 25 and 38.  相似文献   

15.
In a reverse of many studies of translational initiation sites, we have explored the basis for the inactivity of an apparently defective initiation site. Gene VII of the filamentous phage f1 has a translational start site with highly unusual functional properties and a sequence dissimilar to a prokaryotic ribosome binding site. The VII site shows no activity in assays of independent initiation, even in a deletion series designed to remove potentially interfering RNA secondary structure. Activity from the VII site is only observed if the site is coupled to a source of translation immediately upstream, but its efficiency is low at a one-nucleotide spacing from the stop codon of the upstream cistron and extremely sensitive to the distance between the stop codon and the gene VII AUG. These and other atypical characteristics of coupling distinguish the VII site from most coupled initiation sites. To identify the pattern of nucleotide substitutions that give the VII site the capacity for independent initiation, a series of designed and random point mutations were introduced in the sequence. Improving the Shine-Dalgarno complementarity from GG to GGAG or GGAGG made activity detectable, but at only low levels. Random substitutions, each increasing activity above background by a small increment, were found at 16 positions throughout the region of ribosome contact. These substitutions lengthened the Shine-Dalgarno complementarity or changed the G and C residues present in the wild-type site to A or T. Significant activity was not observed unless a strong Shine-Dalgarno sequence and a number of the up-mutations were present together. The nature and distribution of the substitutions and their agreement with the known preferences for nucleotides in initiation sites provide evidence that the VII site's major defect is its primary sequence overall. It appears to lack the specialized sequence required to bind free 30 S ribosomes, and thus depends on the translational coupling process to give it limited activity.  相似文献   

16.
Many of the chloroplast mRNAs possess Shine-Dalgarno (SD)-like sequences (typically GGAGG) in the 5'-untranslated regions, but the position is highly variable. Using a homologous in vitro translation system, we assessed the role for translation of SD-like sequences in four tobacco chloroplast mRNAs. The rbcL mRNA has a typical SD-like sequence at a position similar to the conserved position (-12 to -4 with respect to the start codon) observed in E. coli, and this sequence was found to be essential for translation. This was also the case for the atpE mRNA. However, SD-like sequences in the rps12 mRNA and in the petB mRNA is located far from (-44 to -42) and too close to (-5 to -2) the initiation codon, respectively, and these sequences were not essential for translation. These results indicate that functional SD-like sequences are located around 10 nucleotides upstream from the translational start codon. Competition assays confirmed that a functional SD-like sequence interacts with the 3' terminus of chloroplast 16S rRNA.  相似文献   

17.
钟智  李宏 《生物物理学报》2008,24(5):379-392
以细菌和古菌基因组5′ UTR序列作为研究对象,分析在5′ UTR 的3个不同阅读框架中三联体AUG的分布,发现无论是细菌还是古菌基因组都在阅读框1中有非常明显的AUG缺失(depletion)。AUG的缺失表明在起始密码子上游的AUG很可能会对基因的翻译起始产生影响。分析得知:绝大部分的AUG都是以uORF(upstream open reading frame)的形式出现的,uAUG(upstream AUG)的数量很少,特别是在阅读框1中,而且在细菌基因组的阅读框1中uAUG较多地出现在了含有SD序列的基因上游。比较发现,uAUG引导的序列在同义密码子使用上的偏好性较真正的编码序列差,这可能表明细菌和古菌在同义密码子使用上的偏好性也是决定基因准确地翻译起始的重要因素之一。  相似文献   

18.

Background  

The mRNA translation initiation region (TIR) comprises the initiator codon, Shine-Dalgarno (SD) sequence and translational enhancers. Probably the most abundant class of enhancers contains A/U-rich sequences. We have tested the influence of SD sequence length and the presence of enhancers on the efficiency of translation initiation.  相似文献   

19.
20.
Translation initiation is governed by a limited number of mRNA sequence motifs within the translation initiation region (TIR). In bacteria and bacteriophages, one of the most important determinants is a Shine-Dalgarno (SD) sequence that base pairs with the anti-SD sequence GAUCACCUCCUUA localized in the 3′ end of 16S rRNA. This work assesses a diversity of TIR features in phage T4, focusing on the SD sequence, its spacing to the start codon and relationship to gene expression and essentiality patterns. Analysis shows that GAGG is predominant of all core SD motifs in T4 and its related phages, particularly in early genes. Possible implication of the RegB activity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号