首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The Northwestern Hawaiian Islands (NWHI) are considered to be among the most pristine coral reef ecosystems remaining on the planet. These reefs naturally contain a high percent cover of algal functional groups with relatively low coral abundance and exhibit thriving fish communities dominated by top predators. Despite their highly protected status, these reefs are at risk from both direct and indirect anthropogenic sources. This study provides the first comprehensive data on percent coverage of algae, coral, and non-coral invertebrates at the species level, and investigates spatial diversity patterns across the archipelago to document benthic communities before further environmental changes occur in response to global warming and ocean acidification. Monitoring studies show that non-calcified macroalgae cover a greater percentage of substrate than corals on many high latitude reef sites. Forereef habitats in atoll systems often contain high abundances of the green macroalga Microdictyon setchellianum and the brown macroalga Lobophora variegata, yet these organisms were uncommon in forereefs of non-atoll systems. Species of the brown macroalgal genera Padina, Sargassum, and Stypopodium and the red macroalgal genus Laurencia became increasingly common in the two northernmost atolls of the island chain but were uncommon components of more southerly islands. Conversely, the scleractinian coral Porites lobata was common on forereefs at southern islands but less common at northern islands. Currently accepted paradigms of what constitutes a “healthy” reef may not apply to the subtropical NWHI, and metrics used to gauge reef health (e.g., high coral cover) need to be reevaluated.  相似文献   

2.
Beck  H. J.  Feary  D. A.  Nakamura  Y.  Booth  D. J. 《Coral reefs (Online)》2017,36(2):639-651

Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan (~33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity (K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish (Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.

  相似文献   

3.
Algal contact as a trigger for coral disease   总被引:4,自引:0,他引:4  
Diseases are causing alarming declines in reef‐building coral species, the foundation blocks of coral reefs. The emergence of these diseases has occurred simultaneously with large increases in the abundance of benthic macroalgae. Here, we show that physical contact with the macroalga Halimeda opuntia can trigger a virulent disease known as white plague type II that has caused widespread mortality in most Caribbean coral species. Colonies of the dominant coral Montastraea faveolata exposed to algal transplants developed the disease whereas unexposed colonies did not. The bacterium Aurantimonas coralicida, causative agent of the disease, was present on H. opuntia sampled close to, and away from diseased corals, indicating that the alga serves as a reservoir for this pathogen. Our results suggest that the spread of macroalgae on coral reefs could account for the elevated incidence of coral diseases over past decades and that reduction of macroalgal abundance could help control coral epizootics.  相似文献   

4.
Herbivory is a key process structuring plant communities in both terrestrial and aquatic ecosystems, with variation in herbivory often being related to shifts between alternate states. On coral reefs, regional reductions in herbivores have underpinned shifts from coral to dominance by leathery macroalgae. These shifts appear difficult to reverse as these macroalgae are unpalatable to the majority of herbivores, and the macroalgae suppress the recruitment and growth of corals. The removal of macroalgae is, therefore, viewed as a key ecological process on coral reefs. On the Great Barrier Reef, Sargassum is a dominant macroalgal species following experimentally induced coral–macroalgal phase-shifts. We, therefore, used Sargassum assays and remote video cameras to directly quantify the species responsible for removing macroalgae across a range of coral reef habitats on Lizard Island, northern Great Barrier Reef. Despite supporting over 50 herbivorous fish species and six macroalgal browsing species, the video footage revealed that a single species, Naso unicornis, was almost solely responsible for the removal of Sargassum biomass across all habitats. Of the 42,246 bites taken from the Sargassum across all habitats, N. unicornis accounted for 89.8% (37,982) of the total bites, and 94.6% of the total mass standardized bites. This limited redundancy, both within and across local scales, underscores the need to assess the functional roles of individual species. Management and conservation strategies may need to look beyond the preservation of species diversity and focus on the maintenance of ecological processes and the protection of key species in critical functional groups.  相似文献   

5.
Increased habitat complexity is supposed to promote increased diversity, abundance and biomass. This study tested the effect of the macroalgal cover on temperate reef fishes by mimicking macroalgae on artificial reefs in NW Sicily (Mediterranean Sea). Macroalgal cover affected reef fishes in different ways and independently of intrinsic temporal trends. The fish assemblages of manipulated and control artificial reef units differed in the relative abundances of the associated species, but little in species composition. In line with studies in seagrass habitats, fishes were most abundant in reefs covered by artificial macroalgae. Three species (Boops boops, Serranus scriba and Symphodus ocellatus) exhibited consistently greater abundance on vegetated reef units than on control reef units. The total number of species and the abundance of three particular species (S. scriba, S. ocellatus and Thalassoma pavo) displayed temporal trends which were independent on short and large temporal scales. Only fish total biomass and one species (Spicara flexuosa) displayed strong effects of interaction among the experimental factors. Mechanisms to explain these findings are discussed from observational evidence on habitat use and interactions among multiple species. This study highlights that manipulative experiments involving repeated sampling of fish in artificial habitats appear to be a valid approach to study fish-habitat relationships in fluctuating environments. It is also concluded that macroalgae mimics may serve as a tool for restoring lost marine vegetated habitats when current human-induced conditions prevent the recovery of pristine macroalgal stands.  相似文献   

6.
7.
Marine invertebrate grazing on temperate macroalgae may exert a significant “top-down” control on macroalgal biomass. We conducted two laboratory experiments to test (1) if consumption by the omnivorous mud snail Ilyanassa obsoleta (Say) on the macroalga Ulva lactuca Linnaeus was a function of food quality (nitrogen content) and (2) if grazing on benthic macroalgae occurred at significant rates in the presence of alternative food sources in the sediment (detritus, larvae, benthic microalgae). Grazing rates were higher for N-enriched macroalgae; however, all snails lost weight when grazing on macroalgae alone, indicating that U. lactuca was a poor food source. The presence of sediment from two sites, a sandy lagoon and an adjacent organic-rich muddy tidal creek, did not affect consumption of macroalgae in microcosm experiments, and the grazing snails were capable of significantly reducing macroalgal biomass associated with both sediment types. Grazing rates by this omnivore were as high as 10.83 mg wet weight·individuals 1·d 1 and were similar to those recorded for herbivorous species. In situ loss rates calculated from average grazing rates per individual and snail abundances (up to 3.5 g dry weight·m 2·d 1) also were comparable with those calculated for herbivorous species. This level of grazing could remove up to 88% of new macroalgal growth at the lagoon site where the N supply was relatively low but had a much smaller effect (18% of new growth) at the high-nutrient creek site. Snails facilitated macroalgal growth at both sites by increasing tissue N content by 40%–80%. Consumption and digestion of macroalgae aided in the recycling of nutrients temporarily bound in the algae and resulted in enrichment of surficial sediments. Increased N sequestration in the sediments also was associated with an interruption of snail burrowing behavior due to persistent anoxia in sediments rich in decaying algal material. Our data suggest that in shallow lagoons where mud snails and benthic macroalgae coexist, grazing may influence N retention in macroalgal biomass.  相似文献   

8.
Direct evaluation of macroalgal removal by herbivorous coral reef fishes   总被引:5,自引:5,他引:0  
Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.  相似文献   

9.
Coral reef degradation is often associated with regime shifts from coral‐ to macroalgal‐dominated reefs. These shifts demonstrate that under certain conditions (e.g. coral mortality, decrease in herbivory, increased nutrients supply) some macroalgae may overgrow corals. The outcome of the competition is dependent on algal aggressiveness and the coral susceptibility. In undisturbed reefs, herbivore grazing is regulating macroalgal cover, thus preventing the latter from overgrowing corals. However, some macroalgae have evolved strategies not only to outcompete corals but also to escape herbivory to some extent, allowing overgrowth of some coral species in undisturbed reefs. Epizoism represents one of those successful strategies, and has been previously documented with red algae, cyanobacteria and Lobophora variegata (Dictyotales, Phaeophyceae). Here we report a new case of epizoism leading to coral mortality, involving a recently described species of Lobophora, L. hederacea, overgrowing the coral Seriatopora caliendrum (Pocilloporidae) in undisturbed reefs in New Caledonia.  相似文献   

10.
Coral reefs globally are in decline, with some reefs undergoing phase shifts from coral-dominance to degraded states dominated by large fleshy macroalgae. These shifts have been underpinned by the overharvesting of herbivorous fishes and represent a fundamental change in the physical structure of these reefs. Although the physical structure provided by corals is regarded as a key feature that facilitates herbivore activity, the influence of the physical structure of macroalgal stands is largely unknown. Using transplanted Sargassum, the largest coral reef macroalga, we created habitat patches of predetermined macroalgal density (0.25-6.23 kg m(-2)). Remote video cameras revealed both grazing and browsing fishes avoided high density patches, preferring relatively open areas with low macroalgal cover. This behaviour may provide a positive feedback leading to the growth and persistence of macroalgal stands; increasing the stability of phase shifts to macroalgae.  相似文献   

11.
Herbivory is widely accepted as a key process determining the structure and resilience of coral reefs, with regional reductions in herbivores often being related to shifts from dominance by coral to leathery macroalgae. The removal of leathery macroalgae may therefore be viewed as a critical process on coral reefs. However, few studies have examined this process beyond a within-reef scale. Here, browsing activity was examined across the entire Great Barrier Reef shelf using bioassays of the leathery macroalga Sargassum to directly quantify algal removal. The assays revealed marked cross-shelf variation in browsing intensity, with the highest rates recorded on mid-shelf reefs (55.2–79.9% day−1) and decreasing significantly on inner- (10.8–17.0% day−1) and outer-shelf (10.1–10.4% day−1) reefs. Surprisingly, the variation in browsing intensity was not directly related to estimates of macroalgal browser biomass; rather, it appears to be shaped primarily by the local environment and behaviour of the component species. Removal rates across the inner- and mid-shelf reefs appear to be related to the attractiveness of the assays relative to the resident algal communities. Controlling for the influence of the resident algal communities revealed a positive relationship between removal rates and the biomass of a single macroalgal browsing species, Naso unicornis. In contrast, the low removal rates on the outer-shelf reefs displayed no relationship to algal or herbivore communities and appeared to reflect a negative behavioural response by the resident fishes to a novel, or unfamiliar, alga. These findings not only highlight the complexities of the relationship between fish presence and ecological function, but also the value of examining ecological processes across broader spatial scales.  相似文献   

12.
On tropical reefs where macroalgae are subjected to continuous herbivore pressure, spatial refuges typically are identified as large-scale, landscape interfaces that limit foraging behavior. However, algal distributions and community assemblages may also rely on the availability of smaller scale spatial refuges within the reef. The results of this study demonstrate that the patterns of macroalgal distribution across the back reef of Moorea, French Polynesia, are maintained by herbivores interacting with the small-scale structural complexities of the coral reef landscape. Although the majority of space available for colonization is composed of exposed surfaces, macroalgae rarely are found in the open. Instead, macroalgal occurrence is highest in the protected narrow crevices and hole microhabitats provided by massive Porites spp. coral heads. These distributions are determined initially by post-settlement mortality of young algal recruits in exposed habitats. Rates of consumption for two of the most common macroalgal species found in refuges across the back reef, Halimeda minima and Amansia rhodantha, indicate that algal recruits in exposed habitats are limited by herbivory. While algal abundance and community structure are highly dependent upon herbivore grazing, the availability of small-scale spatial refuges ultimately shapes the distinct community patterns and distributional boundaries of coral reef macroalgae in the back reefs of Moorea.  相似文献   

13.

Increasing ocean temperatures associated with ongoing climate change have resulted in regional reductions in the cover of live coral and increasing concerns that coral reefs will be overgrown by macroalgae. The likelihood of macroalgal overgrowth will, however, depend on the thermal sensitivities of the macroalgae themselves. We exposed recently settled propagules of the common canopy-forming macroalga Sargassum swartzii and adult thalli of three species of Sargassum (S. swatzii, S. cristaefolium, S. polycystum) to three experimental temperatures: ambient, + 2 °C, and + 3.5 °C, reflective of summer minimum, mean, and maximum temperatures for the region. Growth and survival of Sargassum swartzii propagules were assessed over 48 days, and the growth, physical toughness, elemental composition, and susceptibility to herbivory of adult thalli were assessed after short-term exposure (2-weeks) to experimental temperatures. Growth and survival of S. swartzii propagules were reduced by 43% and 84%, respectively, when cultured at the elevated (+ 3.5 °C) temperature compared to ambient temperature. Similarly, elevated temperature resulted in a 17–49% decline in the growth of adult Sargassum thalli relative to controls. Susceptability of S. swartzii and S. cristaefolium to herbivory (i.e. mass removed by herbivores) was 50% less for thalli cultured at elevated (+ 3.5 °C) compared to ambient temperature, but this pattern was not related to changes in the physical or chemical properties of the thalli as a result of elevated temperature. The negative effects of elevated temperatures on the growth and survival of both Sargassum propagules and adult thalli will likely restrict the capacity of Sargassum, and potentially other macroalgae, to establish in new areas, and may also threaten the persistence of existing macroalgal meadows under future ocean temperatures. The thermal sensitivities of tropical Sargassum, together with those of corals, suggest ongoing ocean warming may lead to novel reef ecosystems that are low in both coral cover and macroalgal cover.

  相似文献   

14.
Summer macroalgal biomass and production were analyzed at Potter Cove, King George Island, Antarctica and the potential carbon transfer of macroalgal production to the coastal ecosystem of the cove was estimated. A total of 38 algal species were found, with Desmarestia anceps, D. menziesii and Himantothallus grandifolius accounting for almost 80% of the biomass. Biomass data and published growth rates were combined to calculate the production of the five most abundant species. The standing stock for each summer month was estimated as the product of the average biomass and the area of the macroalgal stands. The monthly biomass production was calculated for each species by difference between the expected biomass and the observed biomass at the previous month. The macroalgal production showed a decreasing trend during the summer months. The average standing stock in the whole cove was 792.84 MT and the production was 1,401.33 MT during the summer 1994–1995. The flux of biomass to the ecosystem during the summer period was 1,370.61 MT, which is almost as much as the total summer production. The study demonstrates that macroalgae are one of the main energy sources in Potter Cove, and probably support a large fraction of the secondary production of the benthos.  相似文献   

15.
Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20–46 %) and those degrading with high macroalgal cover (57–82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m?2 h?1 on coral-dominated and 5.3 ± 2.1 g m?2 h?1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser, Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change with context, differing between systems that are regenerating versus degrading.  相似文献   

16.
The Mondego estuary (Portugal) has suffered severe ecological stress over the last two decades, as manifested in the replacement of seagrasses by opportunistic macroalgae, degradation of water quality and increased turbidity. A restoration plan was implemented in 1998, which aimed to reverse the eutrophication effects, and especially to restore the original natural seagrass (Zostera noltii) community. This article explores the long-term changes in Ampithoe valida and Melita palmata (Amphipoda) populations in response to eutrophication (with consequent seagrass loss and macroalgal proliferation) and to the subsequent restoration plan (with progressive seagrass recovery and macroalgal biomass decline). Until the early 1990s, high densities of A. valida and M. palmata were recorded in the Mondego estuary, especially during the occurrence of the macroalgal bloom and during all the periods in which green macroalgae were available. After the implementation of the restoration plan, species abundance, biomass and production levels decreased considerably due to the progressive decline of green macroalgae. This implied the virtual disappearance of the amphipod population, mainly A. valida. Distinct behaviours displayed by the two species could be related to different food strategies and habitat preferences. Ampithoe valida showed feeding preferences for ephemeral softer, filamentous or bladed algae (e.g. Ulva sp.) due to its high caloric content, using the Z. noltii bed only as a habitat for protection against predators or shelter from wave action. On the other hand, M. palmata did not suffer a strong decline in its population density, biomass and production, which may indicate that this species is probably not a primary consumer of green macroalgae and may readily shift to alternative ecological niches. Handling editor: P. Viaroli  相似文献   

17.
Macroalgae are generally used as indicators of coral reef status; thus, understanding the drivers and mechanisms leading to increased macroalgal abundance are of critical importance. Ocean acidification (OA) due to elevated carbon dioxide (CO2) concentrations has been suggested to stimulate macroalgal growth and abundance on reefs. However, little is known about the physiological mechanisms by which reef macroalgae use CO2 from the bulk seawater for photosynthesis [i.e., (1) direct uptake of bicarbonate (HCO3 ?) and/or CO2 by means of carbon concentrating mechanisms (CCM) and (2) the diffusive uptake of CO2], which species could benefit from increased CO2 or which habitats may be more susceptible to acidification-induced algal proliferations. Here, we provide the first quantitative examination of CO2-use strategies in coral reef macroalgae and provide information on how the proportion of species and the proportional abundance of species utilising each of the carbon acquisition strategies varies across a gradient of terrestrial influence (from inshore to offshore reefs) in the Great Barrier Reef (GBR). Four macroalgal groups were identified based on their carbon uptake strategies: (1) CCM-only (HCO3 ? only users); (2) CCM-HCO3 ?/CO2 (active uptake HCO3 ? and/or CO2 use); (3) Non-CCM species (those relying on diffusive CO2 uptake); and (4) Calcifiers. δ13C values of macroalgae, confirmed by pH drift assays, show that diffusive CO2 use is more prevalent in deeper waters, possibly due to low light availability that limits activity of CCMs. Inshore shallow reefs had a higher proportion of CCM-only species, while reefs further away from terrestrial influence and exposed to better water quality had a higher number of non-CCM species than inshore and mid-shelf reefs. As non-CCM macroalgae are more responsive to increased seawater CO2 and OA, reef slopes of the outer reefs are probably the habitats most vulnerable to the impacts of OA. Our results suggest a potentially important role of carbon physiology in structuring macroalgal communities in the GBR.  相似文献   

18.
Mark E. Hay 《Oecologia》1984,64(3):396-407
Summary Between-habitat differences in macrophyte consumption by herbivorous fishes were examined on three Caribbean and two Indian Ocean coral reefs. Transplanted sections of seagrasses were used as a bioassay to compare removal rates in reef-slope, reef-flat, sand-plain, and lagoon habitats. Herbivore susceptibility of fifty-two species of seaweeds from these habitats was also measured in the field. Seagrass consumption on shallow reef slopes was always significantly greater than on shallow reef flats, deep sand plains, or sandy lagoons. Reef-slope seaweeds were consistently resistant to herbivory while reef-flat seaweeds were consistently very susceptible to herbivory. This pattern supports the hypothesis that defenses against herbivores are costly in terms of fitness and are selected against in habitats with predictably low rates of herbivory.Sand-plain and lagoon seaweeds showed a mixed response when placed in habitats with high herbivore pressure; most fleshy red seaweeds were eaten rapidly, most fleshy green seaweeds were eaten at intermediate rates, and most calcified green seaweeds were avoided or eaten at very low rates. Differences in susceptibility between red and green seaweeds from sand-plain or lagoon habitats may result from differential competitive pressures experienced by these seaweed groups or from the differential probability of being encountered by herbivores. The susceptibility of a species to removal by herbivorous fishes was relatively consistent between reefs. Preferences of the sea urchin Diadema antillarum were also similar to those of the fish guilds.Unique secondary metabolites were characteristic of almost all of the most herbivore resistant seaweeds. However, some of the herbivore susceptible species also contain chemicals that have been proposed as defensive compounds. Genera such as Sargassum, Turbinaria, Thalassia, Halodule, and Thalassodendron, which produce polyphenolics or phenolic acids, were consumed at high to intermediate rates, suggesting that these compounds are not effective deterrents for some herbivorous fishes. Additionally, potential for the production of the compounds caulerpin, caulerpicin and caulerpenyne in various species of Caulerpa did not assure low susceptibility to herbivory.Heavily calcified seaweeds were very resistant to herbivory, but all of these species also produce toxic secondary metabolites which makes it difficult to distinguish between the effects of morphological and chemical defenses. Predictions of susceptibility to herbivory based on algal toughness and external morphology were of limited value in explaining differing resistances to herbivory.  相似文献   

19.
Herbivory is widely accepted as a key process determining the benthic community structure and resilience of coral reefs. Recent studies have mostly focused on the importance of roving herbivorous fishes in ecosystem processes. Here, we examine the role of territorial damselfish in shaping patterns of macroalgal distribution based on benthic surveys and macroalgal bioassays. The territory composition and effect of resident damselfish on the removal of Sargassum bioassays were quantified for six species of damselfish on Lizard Island, a mid-shelf reef in the northern Great Barrier Reef (GBR). The functional composition of algal communities within territories varied markedly among species. The territories of four species (Dischistodus perspicillatus, Dischistodus pseudochrysopoecilus, Plectroglyphidodon lacrymatus, and Stegastes nigricans) were characterized by algal turfs, while the territories of two species (Dischistodus prosopotaenia and Hemiglyphidodon plagiometopon) were characterized by foliose and leathery brown macroalgae. Sargassum, a generally rare alga on mid-shelf reefs, was a particularly common alga within D. prosopotaenia territories on the leeward side of the island but absent within their territories on the windward side of the island. D. prosopotaenia was the only species to retain the transplanted Sargassum, with only a minimal reduction in Sargassum biomass (1.1%) being recorded within their territories at both leeward and windward sites over a 24-h period. In contrast, reductions in Sargassum biomass were high in areas adjacent to D. prosopotaenia territories (83.8%), and within and adjacent to the territories of the five remaining damselfish species (76.2–92.5%). Overall, only one of the six damselfish species provided a refuge for leathery brown macroalgae and may facilitate the development of this macroalgae on mid-shelf reefs of the GBR.  相似文献   

20.
Coral populations have precipitously declined on Caribbean reefs while algal abundance has increased, leading to enhanced competitive damage to corals, which likely is mediated by the potent allelochemicals produced by both macroalgae and benthic cyanobacteria. Allelochemicals may affect the composition and abundance of coral-associated microorganisms that control host responses and adaptations to environmental change, including susceptibility to bacterial diseases. Here, we demonstrate that extracts of six Caribbean macroalgae and two benthic cyanobacteria have both inhibitory and stimulatory effects on bacterial taxa cultured from the surfaces of Caribbean corals, macroalgae, and corals exposed to macroalgal extracts. The growth of 54 bacterial isolates was monitored in the presence of lipophilic and hydrophilic crude extracts derived from Caribbean macroalgae and cyanobacteria using 96-well plate bioassays. All 54 bacterial cultures were identified by ribotyping. Lipophilic extracts from two species of Dictyota brown algae inhibited >50% of the reef coral bacteria assayed, and hydrophilic compounds from Dictyota menstrualis particularly inhibited Vibrio bacteria, a genus associated with several coral diseases. In contrast, both lipo- and hydrophilic extracts from 2 species of Lyngbya cyanobacteria strongly stimulated bacterial growth. The brown alga Lobophora variegata produced hydrophilic compounds with broad-spectrum antibacterial effects, which inhibited 93% of the bacterial cultures. Furthermore, bacteria cultured from different locations (corals vs. macroalgae vs. coral surfaces exposed to macroalgal extracts) responded differently to algal extracts. These results reveal that extracts from macroalgae and cyanobacteria have species-specific effects on the composition of coral-microbial assemblages, which in turn may increase coral host susceptibility to disease and result in coral mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号