首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endophytes are ubiquitous plant‐associated microbes and although they have the potential to alter the decomposition of infected leaf litter, this has not been well‐studied. The endophyte Rhytisma punctatum infects the leaves of Acer macrophyllum (bigleaf maple), causing the appearance of black ‘tar spots’ that persist in senesced leaves. Other foliar fungi also cause visible damage in healthy tissues of this host plant system including an unidentified bullseye‐shaped lesion, common in western Washington. Using three treatments of endophyte infection status in leaf tissue (R. punctatum‐infected, bullseye‐infected, lesion‐free), leaf litter discs were submerged in a third‐order temperate stream using mesh litter bags and harvested periodically over two months to determine the effects of litter treatment and incubation time on litter mass loss, fungal sporulation, and microbial community colonization. Litter containing symptomatic endophyte infections (Rhytisma or bullseye) had reduced sporulation of aquatic hyphomycetes, but decomposed significantly faster than lesion‐free or bullseye‐infected litter. Using amplicon‐based sequencing, we found a significant difference in bacterial communities colonizing Rhytisma‐infected and bullseye‐infected leaf litter, a significant difference in fungal communities colonizing Rhytisma‐infected leaf litter compared to the two other treatments, and a change in both community structure and relative abundances of bacterial and fungal taxa throughout the study period. Indicator Species Analysis clarified the drivers of these community shifts at the genus level. Our results show that endophyte‐associated, in‐stream sporulation and microbial community effects are observable within one species of leaf litter.  相似文献   

2.
Using numerical simulations, we examine the change in plasmon resonance behavior in gold nanorod structures that have a V shape. The reduction in symmetry compared to linear rods causes two different longitudinal-type resonances to appear in a single structure, and the relative intensity and hybridization of these can be controlled by varying the angle of the arms of the ??V.?? The resonances may also be selectively excited by controlling the polarization of the incident light, thereby providing a convenient way to control a nanoscale optical electric field using far-field parameters. For example, the wavelength at which a strong resonance occurs in the V-shaped structures studied can be switched between 630 and 900?nm by a 90° rotation of the polarization of the incident light. Due to the symmetry of the targets, there will be three types of special near-field location; a location at which the electric field intensity is enhanced by either resonance, a location at which the electric field intensity is enhanced by the 630?nm resonance but not by the 890?nm resonance, and a location at which the electric field intensity is enhanced by the 890?nm resonance but not by the 630?nm one.  相似文献   

3.
The color and patterns of animal‐pollinated flowers are known to have effects on pollinator attraction. In this study, the relative importance of flower color and color contrast patterns on pollinator attraction was examined in two pollinator groups, swallowtail butterflies and hawkmoths using two Hemerocallis species; butterfly‐pollinated H. fulva and hawkmoth‐pollinated H. citrina, having reddish and yellowish flowers in human vision, respectively. Flowers of both species have UV bullseye patterns, composed of UV‐absorbing centers and UV‐reflecting peripheries, known to function as a typical nectar guide, but UV reflectance was significantly more intense in the peripheries of H. citrina flowers than in those of H. fulva flowers. Comparison based on the visual systems of butterflies and hawkmoths showed that the color contrast of the bullseye pattern in H. citrina was more intense than that in H. fulva. To evaluate the relative importance of flower color and the color contrast of bullseye pattern on pollinator attraction, we performed a series of observations using experimental arrays consisting of Hemerocallis species and their hybrids. As a result, swallowtail butterflies and crepuscular/nocturnal hawkmoths showed contrasting preferences for flower color and patterns: butterflies preferred H. fulva‐like colored flower whereas the preference of hawkmoths was affected by the color contrast of the bullseye pattern rather than flower color. Both crepuscular and nocturnal hawkmoths consistently preferred flowers with stronger contrast of the UV bullseye pattern, whereas the preference of hawkmoths for flower color was incoherent. Our finding suggests that hawkmoths can use UV‐absorbing/reflecting bullseye patterns for foraging under light‐limited environments and that the intensified bullseye contrast of H. citrina evolved as an adaptation to hawkmoths. Our results also showed the difference of visual systems between pollinators, which may have promoted floral divergence.  相似文献   

4.

Imaging applications at terahertz frequencies are, in general, limited to relatively low spatial resolution due to the effects of diffraction. By using a subwavelength aperture in the near-field, however, it is possible to achieve subwavelength resolution, although low transmission through the aperture limits the sensitivity of this approach. Plasmonic lenses in the form of bullseye structures, which consist of a circular subwavelength aperture surrounded by concentric periodic corrugations, have demonstrated enhanced transmission, thereby increasing the utility of near-field imaging configurations. In this paper, the design, fabrication, and experimental performance of plasmonic lenses optimized for 300 GHz are discussed. While nanofabrication techniques are required for optical applications, microfabrication techniques are sufficient for terahertz applications. The process flow for fabricating a double-sided bullseye structure using a precision micromilling technique is described. Transmission and beam profile measurements using a customized terahertz testbed are presented.

  相似文献   

5.
《BBA》1985,807(1):10-23
Several antenna complexes of Rhodospirillales were studied, within the intracytoplasmic membrane or in their isolated states by comparing resonance Raman spectra of their bacteriochlorophyll (BChl) molecules. It has been found that in B880-type complexes the states of BChl are extremely similar, in terms of their local environments. By contrast, at least two families of structures must be distinguished among the B850-800-type complexes, namely B850-800 S (from Chromatiaceae) and B850-800 NS (from Rhodospirillaceae). It appears that the more the energy of the lower singlet level of antenna BChl is decreased from its value in the isolated state, the smaller is the observed variability in its proteic host sites in the set of complexes observed. On the other hand, resonance Raman spectroscopy permits to conclude that the ground-state interactions assumed by the dihydrophorbin ring of BChl a within these complexes most probably are protein-BChl and not BChl-BChl or lipids-BChl interactions. Histidine is a likely candidate as the Mg ligand for the 880 and 850 nm absorbing molecules, but not for the 800 nm absorbing ones.  相似文献   

6.
An inverse and unusual relationship was found between preferred temperature and acclimation temperature in the bullseye puffer, Sphoeroides annulatus. The final preferendum temperature (PT) was 26.8 °C. The critical thermal maxima (CTMax) were 37.7, 38.8, 40.0, 40.8 and 41.3 °C where the temperatures of acclimation were 19, 22, 25, 28 and 31 °C±1 °C, respectively, and the endpoint of CTMax was loss of the righting response. The acclimation response ratio presented an interval of 0.22-0.38; these values are in agreement with results for other subtropical and tropical fishes. The temperature significantly affected the oxygen consumption of bullseye puffer juveniles. The oxygen consumption rate (OCR) increased significantly with an increment in the temperature from 19 to 31 °C. The range of the temperature coefficient Q10 in bullseye puffer individuals was lowest between 25 and 28 °C, at 1.37. The optimal temperature for growth was 26 °C. The results of this study will be useful for optimizing the culture of bullseye puffer juveniles in controlled conditions.  相似文献   

7.
Raman spectra of bacteriochlorophyll a (BChl) bound to the soluble protein complex from Prosthecochloris aestuarii have been obtained at low temperature, using the resonance effect on their Qx for Soret electronic bands. These spectra show that the acetyl carbonyls of at least four of the seven molecules bound to the monomer subunit of the complex and the ketone carbonyls of at least five of them are oriented close to the mean plane of the conjugated part of the dihydrophorbin macrocycle. Up to three bacteriochlorophyll molecules may have their ketone carbonyls free from hydrogen-bonding and up to two may have their acetyl carbonyls similarly free. Several of the binding sites of the remaining conjugated carbonyls are probably the same as those binding the conjugated carbonyls of bacteriochlorophyll (and of bacteriopheophytin) in reaction centers and in antenna structures of purple bacteria and as those binding chlorophyll in the antenna of higher plants and algae. The present resonance Raman spectra confirm that the magnesium atoms of most of the seven bacteriochlorophylls are pentacoordinated. They also show that polarisation effects from their local environments induce changes in the groundstate structures of the dihydrophorbin skeletons of the complexed molecules with respect to those of isolated, monomeric bacteriochlorophyll. These changes are quasi-identical for the seven molecules. These environmental effects predominate over any structural change brought about by intermolecular bonding of the conjugated carbonyls or of the magnesium atoms. The dihydrophorbin rings of the seven molecules thus appear to be immersed in a nearly homogeneous medium of low permittivity, although specific van der Waals interactions may polarise the free carbonyls to quite different extents. The possible implications of these observations on the interpretation of the electronic spectrum of the set of complexed bacteriochlorophylls are discussed.  相似文献   

8.
Antenna polypeptides from two species of the family Ectothiorhodospiraceae have been investigated. By means of gel filtration and subsequent high-performance liquid chromatography, at least five polypeptides were isolated from each of Ectothiorhodospira halochloris and Ectothiorhodospira halophila. The majority of their primary structures was identified by Edman degradation. Comparison of these polypeptide sequences with the known primary structures of antenna polypeptides from various purple non-sulfur bacteria revealed interesting new aspects with regard to the structure of the core-peripheral antenna system. E. halochloris and E. halophila contain two pairs of alpha- and beta-polypeptides each with typical primary structure elements of core complexes, indicating a modified antenna complex organization.  相似文献   

9.
The movement of cells through extracellular matrix (ECM) is a critical component of many normal and pathological processes in vivo. Consequently, efforts to characterize motility-associated interactions between cells and ECM have led to the development of methods to observe and quantify (assay) the movement of cells under simplified conditions in vitro. In this report, we describe a novel method (the bullseye assay) and apparatus for the concentration of cells into small, precisely sized and shaped circular disks (bullseyes) that serve as starting points for migration of cells within ECM. The same apparatus is used to form the bullseyes and position them at the center of flat disks (windows) of gelled collagen that are supported at the edges by rings of nylon mesh. Complete assemblies, each consisting of a bullseye, collagen window and nylon mesh ring, are transferred to tissue culture wells for assay of cell migration either within or on top of the collagen window. Studies of the migratory responses of three different cell types to specific cytokines demonstrated that the bullseye assay was sensitive, rapid to set up, and easy to use. In conjunction with the bullseye assay, we developed a novel annular grayscale method for quantification of cell migration from digital images. The method is easily mastered, is derived from a measurement program in the public domain, is not subjective and is more discriminative than other techniques of measurement.  相似文献   

10.
The interaction between the two perpendicular Fabry–Perot-like resonances of the antenna–dielectric–slit structure and their influences on the transmission enhancement are investigated with a finite-difference time-domain method. The transmission enhancement is found with the antenna width corresponding to a Fabry–Perot-like resonance condition in the antenna–dielectric–slit structure; otherwise, there is no such an enhancement even when the slit is positioned under the magnetic field maximum. On the other hand, the resonance characteristics of the vertical slit can also modify the field distribution in the horizontal cavity by changing the phase difference at the two antenna ends. It is shown that the enhanced transmission can be realized in a wide range of incident wavelengths from the visible to near-infrared regime for different slit geometries. The physical mechanism of extraordinary optical transmission is discussed with a theoretical dispersion relationship of surface plasmon polaritons based on a metal–insulator–metal cavity model.  相似文献   

11.
Green sulfur bacteria possess two external light-harvesting antenna systems, the chlorosome and the FMO protein, which participate in a sequential energy transfer to the reaction centers embedded in the cytoplasmic membrane. However, little is known about the physical interaction between these two antenna systems. We have studied the interaction between the major chlorosome protein, CsmA, and the FMO protein in Chlorobium tepidum using surface plasmon resonance (SPR). Our results show an interaction between the FMO protein and an immobilized synthetic peptide corresponding to 17 amino acids at the C terminal of CsmA. This interaction is dependent on the presence of a motif comprising six amino acids that are highly conserved in all the currently available CsmA protein sequences.  相似文献   

12.

In this paper, different array arrangements based on magneto-electric (ME) dipole antenna with wideband circular polarization (CP) characteristics are designed and investigated. Planar, triangular prism, square prism, and hexagonal prism array arrangements are considered. Each prism face has a sub-array comprises 2 × 2 ME-dipole elements. Each sub-array has wide impedance matching of 73.7%, a maximum gain of 16.6 dBi, and CP bandwidth of 78.2%. It employs the plasma frequency of the ME-dipole antenna to control its radiation characteristics. Frequency-independent lumped element equivalent circuit is constructed for a single antenna element. It is used to represent the antenna input impedance at different plasma electron densities with fixed physical structure. The proposed equivalent circuit comprises a single series section used for matching enhancement with feeder circuit, and three parallel tuned circuits corresponding to the three resonance frequencies in the input impedance. The best values of the equivalent circuit elements are computed using the particle swarm optimization (PSO) technique. Different array arrangements, planar, triangular, square, and hexagonal prism are designed to create single or multiple beams in different directions. An electronic beam switching is achieved by tuning in the plasma inside the ME-dipole in the desired direction. The radiation characteristics are analyzed and investigated using the finite integration technique (FIT).

  相似文献   

13.

In this paper, a plasma based metamaterial (MM) polarizer is optimized for linear to circular polarization conversion in Ku-band wireless applications. The plasma MM polarizer is design based on the transmission mode. The proposed plasma MM polarizer unit-cell element consists of back-to-back plasma arcs placed on the top and the bottom faces of a dielectric substrate. Polarization Conversion from linear polarized (LP) wave to circular polarized (CP) wave requires that the incident wave is splitted into two orthogonal components with equal magnitudes and π/2 phase difference. The polarization characteristics of the plasma MM polarizer have bandwidth of 17.5% centered around 13.7 GHz. A linearly polarized dielectric resonator antenna (DRA) is designed with impedance bandwidth of 27.05%. The LP-DRA loaded with plasma MM polarizer radiates CP-waves with improved gain of 8.89 dBi. Reconfigurable CP radiation right-hand, left-hand, or linear polarization is achieved when the argon gas in the lower, upper, or both arc-shaped containers is ionized to plasma state. The proposed plasma MM polarizer and the DRA structures are examined utilizing a full-wave simulator.

  相似文献   

14.
We propose a new design of a plasmonic nanoantenna and numerically study its optical properties by means of the 3D finite element method. The nanoantenna is composed of two identical castle-like contour nanometal-filled dielectric media inside the hollows. We examine the influence of the contour thickness, gap width, and dielectric media filled inside the hollows on the antenna resonance conditions. Through these simulations, we show that it is possible to tune an antenna with a constant length over a broad spectral range (ranging in ultraviolet–visible, visible light, and infrared light).  相似文献   

15.
Resonance Raman spectroscopy provided evidence that high 800 nm-absorbing antennae from Rhodopseudomonas (Rps.) acidophila and Rps. palustris have similar structures around their dweller bacteriochlorophylls. These host-site structures are different from those of B 850-800 complexes from Chromatiaceae, which also exhibit a high absorbance at 800 nm. As also shown by previous biochemical data, these complexes might be stoichiometrically different from other antenna complexes, having one more BChl per minimal size unit of protein. A new classification of B 850-800 complexes is proposed, on the basis of resonance Raman and biochemical data: this classification distinguishes a class of B 850-800 S (involving the B 850-800 complexes from sulfur purple bacteria), two classes of B 850-800 NS (involving the B 850-800 complexes from non sulfur purple bacteria) and a class of H 800 complexes (involving the B 850-800 complexes from non sulfur purple bacteria exhibiting a high absorbance at 800 nm).  相似文献   

16.
Two light-harvesting proteins associated with photosystem II of higher plants, namely the major antenna complex LHCIIb and the minor Lhcb4 protein (CP29), have been investigated by resonance Raman spectroscopy. One of the two chlorophylls b and up to five of the six chlorophylls a present in Lhcb4 are shown to adopt similar binding conformations to the (presumably) corresponding molecules in LHCIIb, whereas at least two chlorophylls in the former protein assume unique conformations relative to the bulk complex. The overall conformation of bound xanthophyll molecules is identical in the two antenna proteins, although some small differences are apparent. The pigment binding properties of these two LHCs are discussed, with particular reference to possible structural motifs within this extended family of proteins.  相似文献   

17.
The B800–850 antenna complex of Rhodopseudomonas sphaeroides was studied by comparing the spectral properties of several different types of complexes, isolated from chromatophores by means of the detergents lithium dodecyl sulfate (LDS) or lauryl dimethylamine N-oxide (LDAO). Fluorescence polarization spectra of the BChl 800 emission at 4 K indicated that rapid energy transfer between at least two BChl 800 molecules occurs with a rate constant of energy transfer kET > 3 · 1012 s?1. The maximal dipole-dipole distance between the two BChl 800 molecules was calculated to be 18–19 Å. The porphyrin rings of the BChl 800 molecules are oriented parallel to each other, while their Qy transition moments are mutually perpendicular. The energy-transfer efficiency from carotenoid to bacteriochlorophyll measured in different complexes showed that two functionally different carotenoids are present associated with, respectively, BChl 800 and BChl 850. Fluorescence polarization and linear dichroism spectra revealed that these carotenoids have different absorption spectra and a different orientation with respect to the membrane. The carotenoid associated with BChl 800 absorbs some nanometers more to the red and its orientation is approximately parallel to the membrane, while the carotenoid associated with BChl 850 is oriented more or less perpendicular to the membrane. The fluorescence polarization of BChl 850 was the same for the different complexes. This indicates that the observed polarization of the fluorescence is determined by the smallest complex obtained which contains 8–10 BChl 850 molecules. The B800–850 complex isolated with LDAO thus must consist of a highly ordered array of smaller structures. On basis of these results a minimal model is proposed for the basic unit consisting of four BChl 850 and two BChl 800 and three carotenoid molecules.  相似文献   

18.
The formation of different structures in Drosophila depends on the combined activities of selector genes and signaling pathways. For instance, the antenna requires the selector gene homothorax, which distinguishes between the leg and the antenna and can specify distal antenna if expressed ectopically. Similarly, the eye is formed by a group of "eye-specifying" genes, among them eyeless, which can direct eye development ectopically. We report here the characterization of the hernandez and fernandez genes, expressed in the antennal and eye primordia of the eye-antenna imaginal disc. The predicted proteins encoded by these two genes have 27% common amino acids and include a Pipsqueak domain. Reduced expression of either hernandez or fernandez mildly affects antenna and eye development, while the inactivation of both genes partially transforms distal antenna into leg. Ectopic expression of either of the two genes results in two different phenotypes: it can form distal antenna, activating genes like homothorax, spineless, and spalt, and it can promote eye development and activates eyeless. Reciprocally, eyeless can induce hernandez and fernandez expression, and homothorax and spineless can activate both hernandez and fernandez when ectopically expressed. The formation of eye by these genes seems to require Notch signaling, since the induction of ectopic eyes and the activation of eyeless by the hernandez gene are suppressed when the Notch function is compromised. Our results show that the hernandez and fernandez genes are required for antennal and eye development and are also able to specify eye or antenna ectopically.  相似文献   

19.
Two cDNA fragments corresponding to a heat shock protein and a cell death receptor were isolated from the ovary of the bullseye puffer Sphoeroides annulatus that were arrested in vitellogenesis or induced to ovulate with LHRHa. A reduced expression of both genes was observed following injections of LHRHa, suggesting these genes may participate in processes associated with the arrested ovarian development and preparation for atresia or ovulation.  相似文献   

20.
This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell culture growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号