首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have cloned the gene encoding RNase HII (RNase HIIPk) from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 by screening of a library for clones that suppressed the temperature-sensitive growth phenotype of an rnh mutant strain of Escherichia coli. This gene was expressed in an rnh mutant strain of E. coli, the recombinant enzyme was purified, and its biochemical properties were compared with those of E. coli RNases HI and HII. RNase HIIPk is composed of 228 amino acid residues (molecular weight, 25,799) and acts as a monomer. Its amino acid sequence showed little similarity to those of enzymes that are members of the RNase HI family of proteins but showed 40, 31, and 25% identities to those of Methanococcus jannaschii, Saccharomyces cerevisiae, and E. coli RNase HII proteins, respectively. The enzymatic activity was determined at 30°C and pH 8.0 by use of an M13 DNA-RNA hybrid as a substrate. Under these conditions, the most preferred metal ions were Co2+ for RNase HIIPk, Mn2+ for E. coli RNase HII, and Mg2+ for E. coli RNase HI. The specific activity of RNase HIIPk determined in the presence of the most preferred metal ion was 6.8-fold higher than that of E. coli RNase HII and 4.5-fold lower than that of E. coli RNase HI. Like E. coli RNase HI, RNase HIIPk and E. coli RNase HII cleave the RNA strand of an RNA-DNA hybrid endonucleolytically at the P-O3′ bond. In addition, these enzymes cleave oligomeric substrates in a similar manner. These results suggest that RNase HIIPk and E. coli RNases HI and HII are structurally and functionally related to one another.  相似文献   

2.
NMR spectroscopy combined with paramagnetic relaxation agents was used to study the positioning of the 40-residue Alzheimer Amyloid β-peptide Aβ(1–40) in SDS micelles. 5-Doxyl stearic acid incorporated into the micelle or Mn2+ ions in the aqueous solvent were used to determine the position of the peptide relative to the micelle geometry. In SDS solvent, the two α-helices induced in Aβ(1–40), comprising residues 15–24, and 29–35, respectively, are surrounded by flexible unstructured regions. NMR signals from these unstructured regions are strongly attenuated in the presence of Mn2+ showing that these regions are positioned mostly outside the micelle. The central helix (residues 15–24) is significantly affected by 5-doxyl stearic acid however somewhat less for residues 16, 20, 22 and 23. This α-helix therefore resides in the SDS headgroup region with the face with residues 16, 20, 22 and 23 directed away from the hydrophobic interior of the micelle. The C-terminal helix is protected both from 5-doxyl stearic acid and Mn2+, and should be buried in the hydrophobic interior of the micelle. The SDS micelles were characterized by diffusion and 15N-relaxation measurements. Comparison of experimentally determined translational diffusion coefficients for SDS and Aβ(1–40) show that the size of SDS micelle is not significantly changed by interaction with Aβ(1–40). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The hydrolysis of oligosaccharides and lactose is of great importance to the food industry. Normally, oligosaccharides like raffinose, stachyose, and verbascose which are rich in different plants like soy bean are considered indigestible by the human gut. Moreover, many humans suffer from lactose intolerance due to the absence of effective enzyme that can digest lactose. α-Galactosidase can digest oligosaccharides like raffinose, while β-galactosidases can hydrolyze lactose. Therefore, selection of microorganisms safe for human use and capable of producing high levels of enzymes becomes an attractive task. The objective of this study was to investigate the enhancement of α- and β-galactosidase activity in Lactobacillus reuteri by different metal ions. Ten millimolar of Na+, K+, Fe2+, and Mg2+ and 1 mM of Mn2+ were added separately to the growth culture of six strains of L. reuteri (CF2-7F, DSM20016, MF14-C, MM2-3, MM7, and SD2112). Results showed that L. reuteri CF2-7F had the highest α- and β-galactosidase activity when grown in the medium with added Mn2+ ions (22.7 and 19.3 Gal U/ml, respectively). 0.0274% of Mn2+ ions lead to 27, 18% enhancement of α- and β-galactosidase activity over the control group, and therefore, it could be added to the growth culture of CF2-7F to produce enhanced levels of α- and β-galactosidase activity. The addition of Fe2+ led to a significant (P < 0.01) decrease in the activity of both enzymes for most strains. This study shows that modified culture medium with that 0.0274% Mn2+ can be used to promote the production for α- and β-galactosidase in L. reuteri CF2-7F, which may lead to enhancement of α- and β-galactosidase activity and have a good potential to be used in the food industry.  相似文献   

4.
In human lenses, C-terminal cleavage of αA-crystallin at residues 172,168, and 162 have been reported. The effect of C-terminal truncation of αA-crystallin on subunit exchange and heterooligomer formation with αB-crystallin and homooligomer formation with native αA-crystallin is not known. We have conducted fluorescence resonance energy transfer studies which have shown that the rates of subunit exchange of αA1–172 and αA1–168 with αB-wt were two-fold lower than for αA-wt interacting with αB-wt. The subunit exchange rate between αA1–162 and αB-wt was six-fold lower. These data suggest that cleavage of the C-terminal residues could significantly affect heterooligomerization. On the other hand, the subunit exchange rates between αA-wt and the truncated αA-crystallins were either unchanged or only slightly decreased, which suggest that homooligomerization may not be significantly influenced by C-terminal truncation. The main conclusion from this study is that cleavage of C-terminal residues of αA-crystallin including the nine residues of the flexible tail is expected to significantly affect the formation of heteroaggregates. Reconstitution experiments showed that the presence of an intact C-terminus is essential for the formation of fully integrated heteroaggregates with equal proportion of αA and αB subunits.  相似文献   

5.
6.
Aspirin is an anti-inflammatory drug and a main source of protein acetylation that can alter enzymatic activity and protein functions. Ribonuclease A (RNase A) with several high-affinity binding sites is a possible target for many organic and inorganic molecules (Leonidas at al., [2003] Protein Sci. 12, 2559–2574). This study was designed to examine the interaction of aspirin with RNase A at physiologic conditions. Reaction mixtures of constant protein concentration (3 mM) and different aspirin contents (0.0002–2 mM) are studied by ultraviolet-visible, Fourier transform infrared, and circular dichroism spectroscopic methods to determine the drug binding mode, the drug-binding constant, and the effects of drug complexation on the protein conformation in aqueous solution. Spectroscopic results showed one major binding for the aspirin-RNase complexes with overall binding constant of K=3.57×104 M −1. Minor reductions in the protein α-helix from 15.5 to 14.1% (circular dichroism) using CDPro program and 26 to 21% (infrared) were observed on aspirin interaction. The changes are indicative of some degree of protein unfolding on drug complexation.  相似文献   

7.
The effect of substituting Pro25, located in the α-helical region of the cystatin A structure, with Ser has been studied. The structures of wild type and P25S cystatin A were determined by multidimensional NMR spectroscopy under comparable conditions. These two structures were virtually identical, and the α-helix between Glu15-Lys30 exists with uninterrupted continuity, with a slight bend at residue 25. In order to characterize the possible substitution effects of Pro25 with Ser on the α-helix, the chemical shifts of the amide nitrogens and protons, the generalized order parameters obtained by the analyses of the 15N-1H relaxation data, the amide proton exchange rates, and the NOE networks among the α-helical and surrounding residues were carefully compared. None of these parameters indicated any significant static or dynamic structural differences between the α-helical regions of the wild-type and P25S cystatin A proteins. We therefore conclude that our previous structure of the wild-type cystatin A, in which the α-helix exhibited a sharp kink at Pro25, must be revised. The asymmetric distribution of hydrophobic interactions between the side-chain residues of the α-helix and the rolled β-sheet surface, as revealed by NOEs, may be responsible for the slight bend of the α-helix in both variants and for the destabilized hydrogen bonding of the α-helical residues that follow Pro25/Ser25, as evidenced by increased amide exchange rates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Subunit E of the vacuolar ATPase (V-ATPase) contains an N-terminal extended α helix (Rishikesan et al. J Bioenerg Biomembr 43:187–193, 2011) and a globular C-terminal part that is predicted to consist of a mixture of α-helices and β-sheets (Grüber et al. Biochem Biophys Res Comm 298:383–391, 2002). Here we describe the production, purification and 2D structure of the C-terminal segment E133-222 of subunit E from Saccharamyces cerevisiae V-ATPase in solution based on the secondary structure calculation from NMR spectroscopy studies. E133-222 consists of four β-strands, formed by the amino acids from K136-V139, E170-V173, G186-V189, D195-E198 and two α-helices, composed of the residues from R144-A164 and T202-I218. The sheets and helices are arranged as β1:α1:β2:β3:β4:α2, which are connected by flexible loop regions. These new structural details of subunit E are discussed in the light of the structural arrangements of this subunit inside the V1- and V1VO ATPase.  相似文献   

9.
Summary An X-ray diffraction analysis of the [Fmoc0, TOAC4,8, Leu-OMe11]analogue of the lipopeptaibol antibiotic trichogin A Iv shows that the undecapeptide is folded in a right-handed, mixed α/310-helix. The helical molecules are connected in a head-to-tail arrangement along the b-axis through C=O...H-N intermolecular H-bonding. This packing mode generates a hydrophobic cavity where the Fmoc Nα-protecting groups are accommodated. The distances and angles between the nitroxide groups of the two TOAC residues, separated by one turn of the α-helix, have been determined.  相似文献   

10.
The structural properties and dynamic behavior of the antimicrobial peptide melittin in hydrophobic and polar environments have been investigated. The main characteristics of the secondary structure of melittin in different media have been analyzed and compared with the data on an ideal α-helix. It has been shown that melittin is an α-helix bent in the region of Pro14; the N-terminus of the peptide tends to unfold, while the C-terminal segment (residues 14–23) retains a helical structure for 20 ns of the simulation. 2,2,2-Trifluoroethanol molecules stabilize the helical structure of the peptide by lowering the dielectric constant of the environment and preferentially accumulating near particular sites of the polypeptide chain.  相似文献   

11.
Photobacterium damsela α2,6-sialyltransferase was cloned as N- and C- His-tagged fusion proteins with different lengths (16–497 aa or 113–497 aa). Expression and activity assays indicated that the N-terminal 112 amino acid residues of the protein were not required for its α2,6-sialyltransferase activity. Among four truncated forms tested, N-His-tagged Δ15Pd2,6ST(N) containing 16–497 amino acid residues had the highest expression level. Similar to the Δ15Pd2,6ST(N), the shorter Δ112Pd2,6ST(N) was active in a wide pH range of 7.5–10.0. A divalent metal ion was not required for the sialyltransferase activity, and the addition of EDTA and dithiothreitol did not affect the activity significantly. Mingchi Sun and Yanhong Li contributed equally to this work.  相似文献   

12.
A number of DD-peptidases have been reported to interact with the membrane via C-terminal amphiphilic α-helices, but experimental support for this rests with a few well-characterized cases. These show the C-terminal interactions of DD-carboxypeptidases to involve high levels of membrane penetration, DD-endopeptidases to involve membrane surface binding and class C penicillin-binding proteins to involve membrane binding with intermediate properties. Here, we have characterized C-terminal α-helices from each of these peptidase groups according to their amphiphilicity, as measured by mean <μH>, and the corresponding mean hydrophobicity, <H>. Regression and statistical analyses showed these properties to exhibit parallel negative linear relationships, which resulted from the spatial ordering of α-helix amino acid residues. Taken with the results of compositional and graphical analyses, our results suggest that the use of C-terminal α-helices may be a universal feature of the membrane anchoring for each of these groups of DD-peptidases. Moreover, to accommodate differences between these mechanisms, each group of C-terminal α-helices optimizes its structural amphiphilicity and hydrophobicity to fulfil its individual membrane-anchoring function. Our results also show that each anchor type analysed requires a similar overall balance between amphiphilicity for membrane interaction, which we propose is necessary to stabilize their initial membrane associations. In addition, we present a methodology for the prediction of C-terminal α-helical anchors from the classes of DD-peptidases analysed, based on a parallel linear model.  相似文献   

13.
The protein family (Pfam) PF04536 is a broadly conserved domain family of unknown function (DUF477), with more than 1,350 members in prokaryotic and eukaryotic proteins. High-quality NMR structures of the N-terminal domain comprising residues 41–180 of the 684-residue protein CG2496 from Corynebacterium glutamicum and the N-terminal domain comprising residues 35–182 of the 435-residue protein PG0361 from Porphyromonas gingivalis both exhibit an α/β fold comprised of a four-stranded β-sheet, three α-helices packed against one side of the sheet, and a fourth α-helix attached to the other side. In spite of low sequence similarity (18%) assessed by structure-based sequence alignment, the two structures are globally quite similar. However, moderate structural differences are observed for the relative orientation of two of the four helices. Comparison with known protein structures reveals that the α/β architecture of CG2496(41–180) and PG0361(35–182) has previously not been characterized. Moreover, calculation of surface charge potential and identification of surface clefts indicate that the two domains very likely have different functions.  相似文献   

14.
15.

Background  

FYVE domains have emerged as membrane-targeting domains highly specific for phosphatidylinositol 3-phosphate (PtdIns(3)P). They are predominantly found in proteins involved in various trafficking pathways. Although FYVE domains may function as individual modules, dimers or in partnership with other proteins, structurally, all FYVE domains share a fold comprising two small characteristic double-stranded β-sheets, and a C-terminal α-helix, which houses eight conserved Zn2+ ion-binding cysteines. To date, the structural, biochemical, and biophysical mechanisms for subcellular targeting of FYVE domains for proteins from various model organisms have been worked out but plant FYVE domains remain noticeably under-investigated.  相似文献   

16.
A glycerate kinase gene (ST2037) from the hyperthermophilic crenarchaeon Sulfolobus tokodaii was cloned and expressed in Escherichia coli. The purified homodimeric protein (45 kDa) specifically catalyzed the formation of 2-phosphoglycerate with d-glycerate as substrate. The thermostable enzyme displayed maximum activity (over 20 min) at 90°C and pH 4.5. The maximal activity was in the presence of Co2+. The MOFRL family glycerate kinase used AMP as phosphate donor with maximal activity towards GTP. These characteristics of the enzyme suggested its potential in the catalytic production of 2-phosphoglycerate.  相似文献   

17.
SulA is induced in Escherichia coli by the SOS response and inhibits cell division through interaction with FtsZ. To determine which region of SulA is essential for the inhibition of cell division, we constructed a series of N-terminal and C-terminal deletions of SulA and a series of alanine substitution mutants. Arginine at position 62, leucine at 67, tryptophan at 77 and lysine at 87, in the central region of SulA, were all essential for the inhibitory activity. Residues 3–27 and the C-terminal 21 residues were dispensable for the activity. The mutant protein lacking N-terminal residues 3–47 was inactive, as was that lacking the C-terminal 34 residues. C-terminal deletions of 8 and 21 residues increased the growth-inhibiting activity in lon + cells, but not in lon cells. The wild-type and mutant SulA proteins were isolated in a form fused to E. coli maltose-binding protein, and tested in vitro for sensitivity to Lon protease. Lon degraded wild-type SulA and a deletion mutant lacking the N-terminal 93 amino acids, but did not degrade the derivative lacking 21 residues at the C-terminus. Futhermore, the wild-type SulA and the N-terminal deletion mutant formed a stable complex with Lon, while the C-terminal deletion did not. MBP fused to the C-terminal 20 residues of SulA formed a stable complex with, but was not degraded by Lon. When LacZ protein was fused at its C-terminus to 8 or 20 amino acid residues from the C-terminal region of SulA the protein was stable in lon + cells. These results indicate that the C-terminal 20 residues of SulA permit recognition by, and complex formation with, Lon, and are necessary, but not sufficient, for degradation by Lon. Received: 8 October 1996 / Accepted: 27 November 1996  相似文献   

18.
A thermostable glucoamylase (TtcGA) from Thermoanaerobacter tengcongensis MB4 was successfully expressed in Escherichia coli. The full-length gene (2112 bp) encodes a 703-amino acid polypeptide including a predicted signal peptide of 21 residues. The recombinant mature protein was partially purified to 30-fold homogeneity by heat treatment and gel filtration chromatography. The mature protein is a monomer with the molecular weight of 77 kD. The recombinant enzyme showed maximum activity at 75 °C and pH 5.0. It is the most thermostable bacterial glucoamylase described to date with nearly no activity loss after incubation at 75 °C for 6 h. TtcGA can hydrolyze both α-1, 4- and α-1, 6-glycosidic linkages in various α-glucans. It showed preference for maltooligosaccharides over polysaccharides with specific activity of 80 U/mg towards maltose. Kinetic studies revealed that TtcGA had the highest activity on maltooligosaccharide with four monosaccharide units. The cations Ca2+, Mn2+, Co2+, Mg2+, and reducing agent DTT showed no obvious effects on the action of TtcGA. In contrast, the enzyme was inactivated by Zn2+, Pb2+, Cu2+, and EDTA.  相似文献   

19.
Equilibrium unfolding of A. niger RNase with chemical denaturants, for example GuHCl and urea, and thermal unfolding have been studied as a function of pH using fluorescence, far-UV, near-UV, and absorbance spectroscopy. Because of their ability to affect electrostatic interactions, pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins. ANS binding studies have been conducted to enable understanding of the folding mechanism of the protein in the presence of the denaturants. Spectroscopic studies by absorbance, fluorescence, and circular dichroism and use of K2D software revealed that the enzyme has α + β type secondary structure with approximately 29% α-helix, 24% β-sheet, and 47% random coil. Under neutral conditions the enzyme is stable in urea whereas GuHCl-induced equilibrium unfolding was cooperative. A. niger RNase has little ANS binding even under neutral conditions. Multiple intermediates were populated during the pH-induced unfolding of A. niger RNase. Urea and temperature-induced unfolding of A. niger RNase into the molten globule-like state is non-cooperative, in contrast to the cooperativity seen with the native protein, suggesting the presence of two parts/domains, in the molecular structure of A. niger RNase, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of the A state (molten globule state) of A. niger RNase is unique, because a low concentration of denaturant not only induces structural change but also facilitates transition from one molten globule like state (AMG1) into another (IMG2).  相似文献   

20.
Summary In this study, the variety of sugar residues in the gut glycoconjugates of Triturus carnifex (Amphibia, Caudata) are investigated by carbohydrate conventional histochemistry and lectin histochemistry. The oesophageal surface mucous cells contained acidic glycoconjugates, with residues of GalNAc, Gal β1,3 GalNAc and (GlcNAc β1,4) n oligomers. The gastric surface cells mainly produced neutral glycoproteins with residues of fucose, Gal β1-3 GalNAc, Gal-αGal, and (GlcNAc β1,4) n oligomers in N- and O-linked glycans, as the glandular mucous neck cells, with residues of mannose/glucose, GalNAc, Gal β1,3 GalNAc, (GlcNAc β1,4) n oligomers and fucose linked α1,6 or terminal α1,3 or α1,4 in O-linked glycans. The oxynticopeptic tubulo-vesicular system contained neutral glycoproteins with N- and O-linked glycans with residues of Gal-αGal, Gal β1-3 GalNAc and (GlcNAc β1,4) n oligomers; Fuc linked α1,2 to Gal, α1,3 to GlcNAc in (poly)lactosamine chains and α1,6 to GlcNAc in N-linked glycans. Most of these glycoproteins probably corresponds to the H+K+-ATPase β-subunit. The intestinal goblet cells contained acidic glycoconjugates, with residues of GalNAc, mannose/ glucose, (GlcNAc β1,4) n oligomers and fucose linked α1,2 to Gal in O-linked oligosaccharides. The different composition of the mucus in the digestive tracts may be correlated with its different functions. In fact the presence of abundant sulphation of glycoconjugates, mainly in the oesophagus and intestine, probably confers resistance to bacterial enzymatic degradation of the mucus barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号