首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Although the importance of pollinators has most often been examined in the evolution of floral characters, seed predators may also play a role in shaping floral evolution. In this study, I examined the role of interplant distance, plant size, and flower morphology on Ipomopsis aggregatás (Polemoniaceae) attractiveness to a pre-dispersal seed predator, Hylemya sp. (Anthomyiidae) and to hummingbird pollinators. The attractiveness of I. aggregata individuals to Hylemya was nonlinearly related to interplant distance in experimental arrays. Clumped and highly dispersed plants were preyed upon more frequently than those at intermediate distances. I found no relationship between interplant distance and visitation rates by hummingbird pollinators in these experimental arrays. However, in natural populations studied, clumped plants were more frequently approached by hummingbirds than those growing more widely dispersed. Display size was unrelated to visitation by Hylemya on inflorescences I clipped and maintained as large, small and control. Display size was also unrelated to the total number of visits by hummingbird pollinators to each of these experimental plants, however large display plants were more likely to be visited first in any given visitation sequence. Of various morphological measurements, corolla length showed the strongest positive correlation with Hylemya egg presence. To the extent that plant spacing and morphology is correlated with pollinator visits and ultimate seed set, Hylemya could be choosing flowers optimally, and playing a role in the evolution of floral traits.  相似文献   

2.
Summary Pre-dispersal seed predators must choose proper hosts and flowers on those hosts that have a high probability of setting seed. In this study, I documented that flowers of Ipomopsis aggregata (Polemoniaceae) chosen by a pre-dispersal seed predator (Anthomyiidae: Hylemya sp.) had a higher probability of seed set than flowers the fly did not choose. I experimentally tested the hypothesis that Hylemya uses a post-fertilization cue in making oviposition choices. I found no evidence for this hypothesis.  相似文献   

3.
Flowering phenology and seed set characteristics of five species of Banksia were studied in relation to the nectarivorous birds which feed at their inflorescences. Within the Banksia woodland at the study site near Perth, the flowering seasons of the Banksia species were sequential and only slightly overlapping, providing a year-round nectar source. Although honeyeaters visited alt five species, seed set was very low in each case. Caging experiments indicated that, in B. attenuata at least, alternative pollinators may play a more important role in pollination than do nectar-feeding birds. It is suggested that non-avian pollinators, predatory insects, and characteristics of the breeding system may also have been important in the evolution of the observed flowering phenology and patterns of seed set.  相似文献   

4.
Abstract.  1. The variability of species combinations and membership assembly patterns in an insect pre-dispersal seed predator guild were studied at various spatial and temporal resolutions using presence/absence and abundance data in null models. The guild consists of seven beetle species (four bruchids and three curculionids) and one moth species that live on a perennial vetch, Vicia tenuifolia Roth (Leguminosae).
2. The seed predator guild varied considerably in the number of members and species combinations in space and time, and, contrary to expectations, there was no evidence of interspecific competition among guild members, supporting the view that other processes, including chance events, could contribute to guild formation.
3. It is concluded that, apart from the possibility of stochastic co-occurrence, it is the narrow host specialisation that constrains seed predator members to participate in the guild, and small differences in habitat preference can also lead to spatial and temporal variation.  相似文献   

5.
巴旦杏花物候学与形态学研究   总被引:11,自引:3,他引:11  
成健红  艾尔肯等 《西北植物学报》2001,21(2):339-344,T015,T016
观察研究了喀什地区4个巴旦杏主栽品种的开花物候期,开花习性,花及花粉的形态特征等内容,结果表明:巴旦杏花期始于3月下旬或4月上旬,花期持续约10-20d,4个主栽品种花期相遇;品种间花的形态丰在差异,早开的花花质较好,晚开的花畸形花百分率较高,供试品种的花粉粒在扫描电镜下存在微形态上的差异。  相似文献   

6.
Horvat  Eva  Sajna  Nina 《Biological invasions》2021,23(12):3703-3717
Biological Invasions - Novel interactions between introduced and native species commonly occur and can even be predicted from existing native interactions in a certain area. However, novel...  相似文献   

7.
8.
In many biomes, global warming has resulted in advanced and longer growing seasons, which has often led to earlier flowering in plant taxa. Elevational gradients are ideal to study the effects of global warming as they allow transplantation of plants from their original cooler higher elevations down to elevations with a prospective climate. We transplanted plants from ten populations of the European alpine monocarpic herb species Campanula thyrsoides L. to three sites along a steep mountain slope (600, 1,235 and 1,850 m above sea level) in the Swiss Alps and asked whether reproductive phenology adjusts plastically to elevation and if these responses were adaptive, i.e. increased the fitness of plants. We further assessed current genetic differentiation in phenotypic traits and whether any such origin effects were due to adaptation to climatic conditions of origin. Our results showed that transplantation to lower elevations caused strong shifts in phenology, with plants starting growth and flowering earlier than plants placed at higher elevations. However, compared to flower production at high elevation, number of flowers per plant decreased 21 % at mid- and 61 % at low elevation. The shift in phenology thus came with a high cost in fitness, and we suggest that phenology is maladaptive when C. thyrsoides faces temperature conditions deviating from its natural amplitude. We conclude that the frequently reported phenological shift in plant species as a response to global warming may include heavy fitness costs that may hamper species survival.  相似文献   

9.
中国特有植物血水草开花物候与生殖特性   总被引:2,自引:0,他引:2  
于2008年3-5月对分布在井冈山的血水草(Eomecon chionantha Hance )5个自然种群的开花物候进行了观察,运用开花振幅、相对开花强度和开花同步性等指数研究了其开花物候特征及其对该种生殖成功的影响.结果表明:血水草开花时间为3月下旬-5月上旬,种群花期历时24 ~46 d,个体平均开花持续时间为11~21 d,单花花期一般为3~5d;井冈山血水草种群的开花物候进程呈单峰曲线模式具有一个开花高峰期,表现出一种“集中开花模式”;与大多数亚热带植物一样,血水草具有较低的相对开花强度,分布频率集中在10% ~30%.开花物候指数与生殖间的相关分析结果表明:始花时间与花期持续时间呈显著负相关,而与开花数和坐果率呈显著正相关;花期持续时间与开花数和坐果率呈显著正相关;同步性指数与始花时间、开花数、花期持续时间呈负相关.血水草“集中开花模式”是其在长期的进化过程中适应周围气候条件及生境的一种生殖保障.  相似文献   

10.
Sercu  Bram K.  Moeneclaey  Iris  Goeminne  Birgit  Bonte  Dries  Baeten  Lander 《Plant Ecology》2021,222(6):749-760

Temperate forest understorey plants are subjected to a strong seasonality in their optimal growing conditions. In winter and early spring, low temperatures are suboptimal for plant growth while light becomes limited later in spring season. We can thus expect that differences in plant phenology in relation to spatiotemporal environmental variation will lead to differences in reproductive output, and hence selection. We specifically studied whether early flowering, a paradoxical pattern that is observed in many plant species, is an adaptive strategy, and whether selection for early flowering was confounded with selection for flower duration or was attributable to environmental variables. We used Geum urbanum as a study species to investigate the effect of relevant environmental factors on the species’ flowering phenology and the consequences for plant reproductive output. We monitored the phenology of four to six plants in each of ten locations in a temperate deciduous forest (Belgium). We first quantified variation in flowering time within individuals and related this temporal variation to individual flower reproductive output. Then, we studied inter-individual variation here-in and linked this to reproduction at the plant level, hence studying the selection differential. We found that flowering within individual plants of Geum urbanum was spread over a long period from June to October. Reproductive output of individual flowers, measured as total seed mass per flower, declined during the season. We found no indication for selection for early flowering but rather for longer flower duration. Larger plants had an earlier flowering onset and a higher seed mass, which suggests that these factors covary and are condition dependent. None of the studied environmental variables could explain plant size, although soil pH and to a lesser extent light availability had a positive direct effect on seed mass per plant. Finally, we suggest that the high intra-individual variation in flowering time, which might be a risk spreading strategy of the plant in the presence of seed predation, limits the potential for selection on flowering phenology.

  相似文献   

11.
Plant development and the timing of developmental events (phenology) are tightly coupled with plant fitness. A variety of internal and external factors determine the timing and fitness consequences of these life-history transitions. Microbes interact with plants throughout their life history and impact host phenology. This review summarizes current mechanistic and theoretical knowledge surrounding microbe-driven changes in plant phenology. Overall, there are examples of microbes impacting every phenological transition. While most studies have focused on flowering time, microbial effects remain important for host survival and fitness across all phenological phases. Microbe-mediated changes in nutrient acquisition and phytohormone signaling can release plants from stressful conditions and alter plant stress responses inducing shifts in developmental events. The frequency and direction of phenological effects appear to be partly determined by the lifestyle and the underlying nature of a plant–microbe interaction (i.e., mutualistic or pathogenic), in addition to the taxonomic group of the microbe (fungi vs. bacteria). Finally, we highlight biases, gaps in knowledge, and future directions. This biotic source of plasticity for plant adaptation will serve an important role in sustaining plant biodiversity and managing agriculture under the pressures of climate change.  相似文献   

12.
Male nutrient provisioning is widespread in insects. Females of some species use male-derived nutrients for increased longevity and reproductive output. Despite much research into the consequences of paternal nutrient investment for male and female fitness, the heritability, and therefore the potential of this trait to respond to selection, has rarely been examined. Males of several butterfly species provide the female with nutrients in the spermatophore at mating. Females of the green-veined white butterfly Pieris napi (Lepidoptera: Pieridae) use male donations both for developing eggs (resulting in higher lifetime fecundity of multiply mated females), but also for their somatic maintenance (increasing longevity). Using half-sib, father-son regression and full-sib analyses, I showed that paternal nutrient investment is heritable, both in terms of the absolute but also the relative size of the spermatophore (controlling for body size). Male size and spermatophore size were also genetically correlated. Furthermore, a separate study showed male genotype had a significant effect on female longevity and lifetime fecundity. In contrast, male genotype had no influence on the immediate egg-laying rate of females following mating, suggesting limited scope for male manipulation of immediate female oviposition. These results indicate that females may derive both direct (increased lifetime fecundity and longevity) and indirect (sons with greater reproductive success) fitness benefits from paternal nutrient donations in this species.  相似文献   

13.

Background and Aims

Flowering phenology is a potentially important component of success of alien species, since elevated fecundity may enhance invasiveness. The flowering patterns of invasive alien plant species and related natives were studied in three regions with Mediterranean-type climate: California, Spain and South Africa''s Cape region.

Methods

A total of 227 invasive–native pairs were compared for seven character types across the regions, with each pair selected on the basis that they shared the same habitat type within a region, had a common growth form and pollination type, and belonged to the same family or genus.

Key Results

Invasive alien plant species have different patterns of flowering phenology from native species in the three regions. Whether the alien species flower earlier, later or at the same time as natives depends on the climatic regime in the native range of the aliens and the proportion of species in the invasive floras originating from different regions. Species invading at least two of the regions displayed the same flowering pattern, showing that flowering phenology is a conservative trait. Invasive species with native ranges in temperate climates flower earlier than natives, those from Mediterranean-type climates at the same time, and species from tropical climates flower later. In California, where the proportion of invaders from the Mediterranean Basin is high, the flowering pattern did not differ between invasive and native species, whereas in Spain the high proportion of tropical species results in a later flowering than natives, and in the Cape region early flowering than natives was the result of a high proportion of temperate invaders.

Conclusions

Observed patterns are due to the human-induced sympatry of species with different evolutionary histories whose flowering phenology evolved under different climatic regimes. The severity of the main abiotic filters imposed by the invaded regions (e.g. summer drought) has not been strong enough (yet) to shift the flowering pattern of invasive species to correspond with that of native relatives. It does, however, determine the length of the flowering season and the type of habitat invaded by summer-flowering aliens. Results suggest different implications for impacts at evolutionary time scales among the three regions.Key words: Biological invasions, flowering phenology, genetic inertia, Cape Floristic Region, California, Spain, Mediterranean-type ecosystems, water availability, climatic origin  相似文献   

14.
15.
To create plots with differential levels ofEuseius, malathion sprays, highly toxic to phytoseiids but of low toxicity to citrus red mite,Panonychus citri (CRM), and citrus thrips,Scirtothrips citri, were applied to blocks of Valencia oranges for three seasons (1984, 1985 and 1986) and Eureka lemons for one season (1985). Releases ofEuseius spp. were made in plots within the treated blocks. In 1984, CRM populations were highest in the treated/no release plot, lowest in the untreated and intermediate in the treated/Euseius stipulatus-release plot. In 1985, CRM populations were high in all plots in the oranges (including theE. tularensis release) except theE. stipulatus-release plot, and in all plots in the lemons except the untreated.Euseius releases in the lemons had no effect, apparently because they were followed by very hot weather. In 1986, CRM was very low in all plots.Euseius stipulatus became the dominant phytoseiid species even in theE. tularensis-release plots after a few weeks, indicating that this species colonized more readily and spread to other trees more rapidly than didE. tularensis. The results support the hypothesis thatE. stipulatus is an important mortality factor contributing to CRM control at low levels.Euseius stipulatus also may have a negative impact on the citrus rust mite,Phyllocoptruta oleivora. Citrus thrips populations were low during the entire study period and did not differ significantly between plots.  相似文献   

16.
研究巫山淫羊藿(Epimedium wushanense)3个种群的开花物候进程和生殖特征,分析了不同种群中的花部特征、开花物候指数和结实率差异,以及开花物候指数对巫山淫羊藿生殖成功的影响。结果表明:巫山淫羊藿花期为3月初到4月中下旬,种群开花一般历时22~27d;单株花期(花序)约12~17d;单花花期一般为3~4d。3个种群的个体水平的开花振幅曲线呈单峰型曲线,均具有较高的开花同步指数,表现出一种集中开花式样。相关分析表明:坐果数与开花高峰期、终花期、花期持续时间和花蕾数均呈极显著正相关,但坐果数与始花期无相关关系。开花物候变异系数分析表明:3个种群中花期持续时间、单花持续时间、终花期、开花高峰期和坐果数差异极显著;总花数、开花振幅和结实率差异显著;开花同步指数和始花期无显著差异性。3个种群中除同步性指数外,其余指数的变异系数均有差异,此外,巫山淫羊藿中结实率受到距的长短的影响。表明巫山淫羊藿的开花物候和生殖特征受到微环境的影响,同时生殖特征还受到花部特征距的影响。  相似文献   

17.
18.
The neotropical Drosophila paulistorum superspecies, consisting of at least six geographically overlapping but reproductively isolated semispecies, has been the object of extensive research since at least 1955, when it was initially trapped mid-evolution in flagrant statu nascendi. In this classic system females express strong premating isolation patterns against mates belonging to any other semispecies, and yet uncharacterized microbial reproductive tract symbionts were described triggering hybrid inviability and male sterility. Based on theoretical models and limited experimental data, prime candidates fostering symbiont-driven speciation in arthropods are intracellular bacteria belonging to the genus Wolbachia. They are maternally inherited symbionts of many arthropods capable of manipulating host reproductive biology for their own benefits. However, it is an ongoing debate as to whether or not reproductive symbionts are capable of driving host speciation in nature and if so, to what extent. Here we have reevaluated this classic case of infectious speciation by means of present day molecular approaches and artificial symbiont depletion experiments. We have isolated the α-proteobacteria Wolbachia as the maternally transmitted core endosymbionts of all D. paulistorum semispecies that have coevolved towards obligate mutualism with their respective native hosts. In hybrids, however, these mutualists transform into pathogens by overreplication causing embryonic inviability and male sterility. We show that experimental reduction in native Wolbachia titer causes alterations in sex ratio, fecundity, and mate discrimination. Our results indicate that formerly designated Mycoplasma-like organisms are most likely Wolbachia that have evolved by becoming essential mutualistic symbionts in their respective natural hosts; they have the potential to trigger pre- and postmating isolation. Furthermore, in light of our new findings, we revisit the concept of infectious speciation and discuss potential mechanisms that can restrict or promote symbiont-induced speciation at post- and prezygotic levels in nature and under artificial laboratory conditions.  相似文献   

19.
When ejaculates are costly to produce, males are expected to allocate their ejaculate resources over successive matings in a manner that optimizes their reproductive success and this may have important consequences for their mates. In seed beetles (Coleoptera; Bruchidae), ejaculates vary in size across species from weighing less than 1%, up to as much as 8%, of male body weight. Ejaculates contain not only sperm but also a range of additional substances and females in some species gain benefits from receiving large ejaculates. Male ejaculate allocation may thus affect female fitness. Here, we first characterized the pattern of male ejaculate allocation over successive matings in seven-seed beetle species. We then assessed how this allocation affected female fitness in each species. Although females generally benefited from receiving large ejaculates, the interspecific variation observed both in ejaculate allocation patterns and in their effects on female fitness was remarkably large considering that the species studied are closely related. Our analyses suggest that variation in ejaculate composition is the key, both within and across species. We discuss possible causes for this variation and conclude that coevolution between male ejaculates and female utilization of ejaculate substances has apparently been rapid in this clade.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号