首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
X L Lu  S K Yang 《Chirality》1990,2(1):1-9
Metabolism of halazepam [7-chloro-1,3-dihydro-5-phenyl-1-(2,2,2-trifluoroethyl)-2H-1,4-benzod iazepin- 2-one, HZ] was studied by incubation with liver microsomes prepared from untreated, phenobarbital (PB)-treated, and 3-methylcholanthrene (3MC)-treated male Sprague-Dawley rats. Metabolites of HZ were separated by normal-phase HPLC. Relative rates of HZ metabolism by liver microsomes prepared from untreated and treated rats were PB-treated much greater than untreated greater than 3MC-treated at low concentration of microsomal enzymes (0.25 mg protein per ml of incubation mixture) and PB-treated much greater than 3MC-treated approximately untreated at high concentration of microsomal enzymes (2 mg protein per ml of incubation mixture). The relative amounts of major metabolites were found to be 3-hydroxy-HZ (3-OH-HZ) greater than N-desalkylhalazepam (NDZ, also known as N-desmethyldiazepam and nordiazepam) much greater than oxazepam (OX) for all three rat liver microsomal preparations and the distribution of metabolites was independent of microsomal enzyme concentrations. Enantiomers of 3-OH-HZ were resolved by HPLC on a Chiralcel OC column (cellulose trisphenylcarbamate coated on silica gel, particle size 10 microns). 3-OH-HZ enantiomeres have racemization half-lives of approximately 150 min in pH 4, 7.5, and 10 aqueous solutions. 3-OH-HZ formed in the metabolism of HZ by liver microsomes prepared from untreated and treated rats were found to have 3R/3S enantiomer ratios of 37/63 (untreated), 55/45 (PB-treated), and 36/64 (3MC-treated), respectively. N-dealkylation of 3-OH-HZ by liver microsomes from PB-treated rats was substrate enantioselective; the 3R-enantiomer was N-dealkylated faster than 3S-enantiomer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Metabolism of 3H-labeled (+)-(S,S)- and (-)-(R,R)-1,2-dihydrodiols of triphenylene by rat liver microsomes and 11 purified isozymes of cytochrome P450 in a reconstituted monooxygenase system has been examined. Although both enantiomers were metabolized at comparable rates, the distribution of metabolites between phenolic dihydrodiols and bay-region, 1,2-diol 3,4-epoxide diastereomers varied substantially with the different systems. Treatment of rats with phenobarbital (PB) or 3-methylcholanthrene (MC) caused a slight reduction or less than a twofold increase, respectively, in the rate of total metabolism (per nanomole of cytochrome P450) of the enantiomeric dihydrodiols compared to microsomes from control rats. Among the 11 isozymes of cytochrome P450 tested, only cytochromes P450c (P450IA1) and P450d (P450IA2) had significant catalytic activity. With either enantiomer of triphenylene 1,2-dihydrodiol, both purified cytochrome P450c (P450IA1) and liver microsomes from MC-treated rats formed diol epoxides and phenolic dihydrodiols in approximately equal amounts. Purifed cytochrome P450d (P450IA2), however, formed bay-region diol epoxides and phenolic dihydrodiols in an 80:20 ratio. Interestingly, liver microsomes from control or PB-treated rats produced only diol epoxides and little or no phenolic dihydrodiols. The diol epoxide diastereomers differ in that the epoxide oxygen is either cis (diol epoxide-1) or trans (diol epoxide-2) to the benzylic 1-hydroxyl group. With either purified cytochromes P450 (isozymes c or d) or liver microsomes from MC-treated rats, diol epoxide-2 is favored over diol epoxide-1 by at least 4:1 when the (-)-enantiomer is the substrate, while diol epoxide-1 is favored by at least 5:1 when the (+)- enantiomer is the substrate. In contrast, with liver microsomes from control or PB-treated rats, formation of diol epoxide-1 relative to diol epoxide-2 was favored by at least 2:1 regardless of the substrate enantiomer metabolized. This is the first instance where the ratio of diol epoxide-1/diol epoxide-2 metabolites is independent of the dihydrodiol enantiomer metabolized. Experiments with antibodies indicate that a large percentage of the metabolism by microsomes from control and PB-treated rats is catalyzed by cytochrome P450p (P450IIIA1), resulting in the altered stereoselectivity of these microsomes compared to that of the liver microsomes from MC-treated rats.  相似文献   

3.
D Kupfer 《Life sciences》1974,15(4):657-670
The spectral changes associated with the addition of prostaglandins (PGs) to hepatic microsomes from guinea pigs and rats were examined. PGA1, PGA2, PGE1, PGE2, PGF and PGF when added to guinea pig liver microsomes exhibited type I spectra. The binding affinities as determined from spectral dissociation constants (Ks) were highest with PGA1 and PGA2. With liver microsomes from control or 3-methyl-cholanthrene (MC)-treated rats, PGs did not yield type I spectra; however, in this case a weak spectrum, designated here as type “II” was at times observed, With microsomes from phenobarbital (Pb)-treated rats only PGA1 and PGA2 yielded type I spectra; again in absence of type I spectrum, a weak type “II” was occasionally observed. The addition of PGA1 and PGA2 to liver microsomes from Pb-treated rats inhibited the microcomal mediated hydroxylation of hexobarbital. The inhibition by PGA1 was competitive; the Ki = 8.2 × 10?4 M was found to be similar in magnitude to the Ks = 7.3 × 10?4 M of PGA1 observed with rat liver microsomes. These observations suggested that PGs particularly of the A series interact with the hepatic microsomal cytochrome P-450 monooxygenase system.  相似文献   

4.
A form of cytochrome P-450 (P-450 MC1) has been isolated from the livers of 3-methylcholanthrene-treated rats. The molecular weight is 54,500 and the heme iron is in the high spin configuration which clearly differenciates this form from the other major cytochrome induced by 3-methylcholanthrene (P-450 MC2). Whilst MC2 actively dealkylated 7-ethoxycoumarin and 7-ethoxyresorufin, MC1 was only active with 7-ethoxyresorufin. Ouchterlony immunodiffusion analysis and ELISA showed that anti MC1 and anti MC2 reacted with both MC1 and MC2 but preferentially with the homologous antigen. Both anti MC1 and MC2 cross-reacted strongly with microsomes from 3-methylcholanthrene, Aroclor 1254 and isosafrole-treated rats and also, but much weaker, with microsomes from phenobarbital, trans-stilbene oxide and chlofibrate-treated as well as untreated rats. Both MC1 and MC2 are induced by the same inducers, 3-methylcholanthrene, Aroclor 1254 and also isosafrole, whilst phenobarbital, trans-stilbene oxide and chlofibrate did not induce either of them, which shows that MC1 and MC2 are under similar control by various types of inducers, but MC1 was present in control microsomes at higher levels than MC2.  相似文献   

5.
Rat lung microsomes were shown to ω-hydroxylate acyclic monoterpene alcohols in the presence of NADPH and O2. NADH could neither support hydroxylation efficiently nor did it show synergistic effect. The hydroxylase activity was greater in microsomes prepared from β-naphthoflavone (BNF)-treated rats than from phenobarbital (PB)-treated or control microsomal preparations. Hydroxylation was specific to the C-8 position in geraniol and has a pH optimum of 7.8. The inhibition of the hydroxylase activity by SKF-525A, CO, N-ethylmaleimide, ellipticine, α-naphthoflavone, cyt. c and p-CMB indicated the involvement of the cyt. P-450 system. However, NaN3 stimulated the hydroxylase activity to a significant level. Rat kidney microsomes were also capable of ω-hydroxylating geraniol although the activity was lower than that observed with lungs.  相似文献   

6.
Metabolism of propranolol in liver microsomes was markedly induced in rats and C57BL6J mice treated with 3-methylcholanthrene (3-MC) or sudan III, inducers of cytochrome P-448. 7,8 Benzoflavone inhibited propranolol metabolism in microsomes from treated rats. 3-MC did not induce propranolol metabolism in genetically nonresponsive DBA2 mice. High-performance liquid chromatographical analysis of propranolol metabolites revealed a 6-fold increase in propranolol N-desisopropylase activities in liver microsomes from sudan III- or 3-methylcholanthrene-treated rats. It is concluded that propranolol N-desisopropylation is predominantly catalyzed by cytochrome P-448.  相似文献   

7.
Warfarin, specifically labeled with deuterium in the 7 position, was incubated with liver microsomes from untreated rats or rats which were pretreated with either phenobarbital of β-napthoflavone. The four phenolic metabolites (6-, 7-, 8- and 4′-hydroxywarfarin) were isolated and quantitated by GCMS and the percent deuterium retention calculated. In all induction states the 7-hydroxy metabolite of (7,2H)warfarin retained greater than 77% of the deuterium. These results suggest that hydroxylation at the 7 position (meta hydroxylation) cannot proceed by either a direct insertion or abstraction mechanism.  相似文献   

8.
Metabolism of biosynthetic (?)-trans-(3R,4R)-dihydroxy-3,4-dihydrochrysene by liver microsomes from control, phenobarbital-treated and 3-methylcholanthrene-treated rats was investigated. Although previous studies of the metabolism of related benzo[a]pyrene and benzo[e]pyrene dihydrodiols which also prefer the diaxial conformation had indicated that diol epoxides were minor metabolites, the diastereomeric chrysene 3,4-diol-1,2-epoxides-1 and ?2 were major metabolites (66–90%). All three types of microsomes metabolized the chrysene 3,4-dihydrodiol at low but essentially similar rates (0.5–0.7 nmol substrate/nmol cytochrome P-450/min).  相似文献   

9.
Metabolism of triphenylene by liver microsomes from control, phenobarbital(PB)-treated rats and 3-methylcholanthrene(MC)-treated rats as well as by a purified system reconstituted with cytochrome P-450c in the absence or presence of purified microsomal epoxide hydrolase was examined. Control microsomes metabolized triphenylene at a rate of 1.2 nmol/nmol of cytochrome P-450/min. Treatment of rats with PB or MC resulted in a 40% reduction and a 3-fold enhancement in the rate of metabolism, respectively. Metabolites consisted of the trans-1,2-dihydrodiol as well as 1-hydroxytriphenylene, and to a lesser extent 2-hydroxytriphenylene. The (-)-1R,2R-enantiomer of the dihydrodiol predominated (70 to 92%) under all incubation conditions. Incubation of racemic triphenylene 1,2-oxide with microsomal epoxide hydrolase produced dihydrodiol which was highly enriched (80%) in the (-)-1R,2R-enantiomer. Experiments with 18O-enriched water showed that attack of water was exclusively at the allylic 2-position of the arene oxide, indicating that the 1R,2S-enantiomer of the oxide was preferentially hydrated by epoxide hydrolase. Thiol trapping experiments indicated that liver microsomes from MC-treated rats produced almost exclusively (greater than 90%) the 1R,2S-enantiomer of triphenylene 1,2-oxide whereas liver microsomes from PB-treated rats formed racemic oxide. The optically active oxide has a half-life for racemization of only approximately 20 s under the incubation conditions. This study may represent the first attempt to address stereochemical consequences of a rapidly racemizing intermediary metabolite.  相似文献   

10.
2-methyellipticinium (NSC 226137) does not exhibit any spectral interaction with cytochrome p-450; however, it is transformed in vitro by microsomes from livers of phenobarbital induced rats. This transformation is NADPH dependant. According to presently available analytical criteria (HPLC and chromatographic behavior, UV and mass spectra), its product is very likely 2-methyl-9-hydroxyellipticinium (NSC 264137) which is an active antitumor drug in man. Two minor metabolites are also present. The same major product is found in the bile of non-induced rats after intravenous administration of 2-methylellipticinium.  相似文献   

11.
In plate assays in the presence of S. typhimurium TA100 and various amounts of liver 9000 X g supernatant (S9) from either untreated, phenobarbitone- (PB) or Aroclor-treated rats, the S9 concentration required for optimal mutagenicity of aflatoxin B1 (AFB) depended both on the source of S9 and on the concentration of the test compound. In these assays, the water-soluble procarcinogen, dimethylnitrosamine (DMN) was mutagenic in S. typhimurium TA1530 only in the presence of a 35-fold higher concentration of liver S9 from PB-treated rats than that required for AFB, a lipophilic compound. In liquid assays, a biphasic relationship was observed in the mutagenicities in S. typhimurium TA100 of benzo[a]pyrene (BP) and AFB and the concentration of liver S9. For optimal mutagenesis of BP, the concentration of liver S9 from rats treated with methylcholanthrene (MC) was 4.4% (v/v); for AFB it was 2.2% (v/v) liver S9 from either Aroclor-treated or untreated rats. At higher concentrations of S9 the mutagenicity of BP and of AFB was related inversely to the amount of S9 per assay. The effect of Aroclor treatment on the microsomemediated mutagenicity of AFB was assay-dependent: in the liquid assay, AFB mutagenicity was decreased, whereas in the plate assay it did not change or was increased. As virtually no bacteria-bound microsomes were detected by electron microscopy, after the bacteria had been incubated in a medium containing 1-34% (v/v) MC-treated rat-liver S9, it is concluded that, in mutagenicity assays, mutagenic metabolites generated by microsomal enzymes from certain pro-carcinogens have to diffuse through the assay medium before reaching the bacteria. Thus the mutagenicity of BP was dependent on both the concentration of rat-liver microsomes and that of total cytosolic proteins and other soluble nucleophiles such as glutathione. At a concentration of 4.4% (v/v) liver S9, the mutagenicity of BP was about 3.6 times higher than in assays containing a 4-fold higher concentration of cytosolic fraction. Studies on the glutathione-dependent reduction of BP mutagenicity in plate assays has shown that, in the presence of liver S9 concentrations greater than that required for optimal mutagenicity, the reduction in mutagenicity was related directly to the concentration of liver S9. Thus, in the Salmonella/microsome assay, when the concentration of rat-liver S9 was increased over and above the amount required for the optimal mutagenicity of BP, the mutagenic metabolites of BP were inactivated (by being trapped with cytosolic nucleophiles and/or by enzymic conjugation with glutathione); this effect increased more rapidly than their rate of formation. The concentration of liver S9 for optimal mutagenicity of test compounds requiring activation catalyzed by mono-oxygenases seems, therefore, to be related to the departure from linearity of the relationship between the rate of formation of mutagenic metabolites and the concentration of liver S9.  相似文献   

12.
Under anaerobic conditions the addition of halothane to NADPH-reduced liver microsomes from phenobarbital-pretreated male rats resulted in a pronounced inactivation of microsomal cytochrome P-450, presumably produced by covalent binding of reactive halothane metabolites such as the CF3CHCl-radical. Compared with microsomes from phenobarbital-pretreated rats, the loss of active cytochrome P-450 was markedly decreased in microsomes from both 3-methylcholanthrene-pretreated and untreated rats. Increasing the O2-partial pressure decreased the amount of cytochrome P-450 inactivated by halothane metabolites. At an O2-partial pressure of approximately 40 mm Hg the inactivation was virtually eliminated.  相似文献   

13.
In vivo and in vitro studies were carried out to determine the effects of estradiol and other steroid hormones on aryl hydrocarbon hydroxylase-mediated binding of benzo(a)pyrene metabolites to DNA. Injection of female C57B16J mice with 0.2 mg or 2 mg of estradiol 24 hours prior to, during and 24 hours after injection of 3-methylcholanthrene resulted in a significant decrease in the capacity of hepatic microsomes from these animals to mediate the binding of benzo(a)pyrene metabolites to DNA when compared to microsomes from animals receiving 3 methylcholanthrene treatment only. Binding of benzo(a) pyrene metabolites was inhibited between 22 and 50%, depending on the dose of estradiol used. The enzyme and cytochrome components of the aryl hydrocarbon hydroxylase multienzymic complex were not affected by either estradiol treatment. The data suggests that estradiol inhibits aryl hydrocarbon hydroxylase mediated binding of benzo(a)pyrene metabolites to DNA by activity as a non-competitive inhibitor of aryl hydrocarbon hydroxylase activity.  相似文献   

14.
An antibody prepared against purified rat liver NADPH-cytochrome c reductase inhibited both the pulmonary and hepatic microsomal covalent binding of 4-ipomeanol as well as the respective NADPH-cytochrome c reductase activities, findings which are consistent with previous studies which indicated the participation of cytochrome P450 in the metabolic activation of the toxin. An antibody prepared against purified rat liver cytochrome b5, which strongly inhibited both the rat hepatic and pulmonary NADH-dependent cytochrome c reductases, and was inactive against the respective NADPH-dependent cytochrome c reductases, had little effect on metabolic activation of 4-ipomeanol by hepatic microsomes, but strongly inhibited both the NADH-supported and the NADPH-supported pulmonary microsomal metabolism and covalent binding of the compound. These results suggest that metabolic activation of 4-ipomeanol involves a two-electron transfer in which transfer of the second electron via cytochrome b5 is rate-limiting in lung microsomes.  相似文献   

15.
A cytochrome P450 called PBD-1 isolated from liver microsomes of an adult male Beagle dog treated with phenobarbital (PB) is structurally and functionally similar to members of the P450IIIA gene subfamily in rat and human liver microsomes. The sequence of the first 28 amino-terminal residues of PBD-1 is identical in 15 and 20 positions, respectively, to the P450IIIA forms P450p from rat and P450NF (and HLp) from human. Upon immunoblot analysis, anti-PBD-1 IgG recognizes PCNa (P450p) and PCNb (PB/PCN-E) from rat, P450NF from human, and two proteins in liver microsomes from both untreated and PB-treated dogs. Similarly, anti-PCNb IgG cross-reacts with PBD-1 and with at least one protein in microsomes from untreated dogs and two proteins in microsomes from PB-treated dogs. P450IIIA-form marker steroid 6 beta-hydroxylase activities increase 2.5-fold upon PB-treatment of dogs and are selectively inhibited by anti-PBD-1 IgG. NADPH-dependent triacetyloleandomycin (TAO) complex formation and erythromycin demethylase, also marker activities for P450IIIA forms from rats and humans, increase 4- and 5-fold in dog liver microsomes upon PB treatment, whereas immunochemically reactive PBD-1 is induced 3-fold. In microsomes from PB-treated dogs, 5 mg anti-PBD-1 IgG/nmol P450 inhibits greater than 75 and 50% of TAO complex formation and erythromycin demethylase activity, respectively. TAO complex formation is not inhibited by chloramphenicol, a selective inhibitor of the major PB-inducible dog liver cytochrome P450, PBD-2. These data suggest that PBD-1 or another immunochemically related form is responsible for a major portion of macrolide antibiotic metabolism by microsomes from PB-treated dogs and for steroid 6 beta-hydroxylation by microsomes from both untreated and PB-treated dogs. Major species differences were noted, however, in the apparent Km for 6 beta-hydroxylation of androstenedione by liver microsomes from untreated rats (24 microM), humans (380 microM), and untreated dogs (4700 microM).  相似文献   

16.
Vitamin D3-deficient chick kidney microsomes in vitro metabolize 25-hydroxyvitamin D3 to two polar metabolites by a pathway which may involve side-chain modification. Molecular oxygen and a source of reduced nicotinamide adenine dinucleotide phosphate are required for this metabolism. Kidney cytosol obtained from deficient chicks or kidney microsomes of vitamin D3-repleted chicks do not metabolize 25-hydroxyvitamin D3. The two products are tentatively designated MIC-I and MIC-II.  相似文献   

17.
We have examined the metabolites produced by in vitro incubation of benzo(a)pyrene with 3-methylcholanthrene-induced mice liver microsomes. Our objective was to observe directly a possible difference in microsomal enzyme systems of animal models having different susceptibility to chemical carcinogens. The metabolites produced by the two animal models,C57BL6J and DBA2 mice, were analyzed by a highly sensitive, “three-dimensional” fluorescence plotting technique. The fluorescence spectra of the total ethyl acetate-soluble metabolites clearly indicate that the metabolites produced by DBA2 enzymes were predominantly monohydroxylated benzo(a)pyrene while those produced by the liver microsomes of C57BL6J were highly enriched with the 7,8-dihydrodihydroxybenzo(a)pyrene type.  相似文献   

18.
In order to define the site of bioactivation of CCl4, CHCl3 and CBrCl3 in the NADPH cytochrome c reductase-cytochrome P-450 coupled systems of liver microsomes, the 14C-labeled hepatotoxins were incubated invitro with isolated rat liver microsomes and a NADPH-generating system. The covalent binding of radiolabel to microsomal protein was used as a measure of the conversion of the hepatotoxins to reactive intermediates. Omission of NADPH, incubation under CO:O2 (8:2) and addition of a cytochrome c reductase specific antisera mardedly reduced the covalent binding of all three compounds. When cytochrome P-450 was reduced to less than 25% of normal by pretreatment of rats with allylisopropylacetamide (AIA), but cytochrome c reductase activity was unchanged, the covalent binding of CCl4, CHCl3, and CBrCl3 was decreased by 63, 83, 70%, respectively. Incubation under an atmosphere of N2 enhanced the binding of CCl4, inhibited the binding of CHCl3 and did not influence the binding of CBrCl3. It is concluded that cytochrome P-450 is the site of bioactivation of these three compounds rather than NADPH cytochrome c reductase and that CCl4 bioactivation proceeds by cytochrome P-450 dependent reductive pathways, while CHCl3 activation proceeds by cytochrome P-450 dependent oxidative pathways.  相似文献   

19.
Injection of [3H]aflatoxin B1 into rats yielded covalently bound derivatives in hepatic DNA, rRNA, and protein. Mild acid hydrolysis of the DNA and rRNA adducts formed a derivative indistinguishable from 2,3-dihydro-2,3-dihydroxy-aflatoxin B1. The data indicate that approximately 60% of the nucleic acid adducts were derived from reactions in vivo with aflatoxin B1-2,3-oxide. Acid hydrolysis of rRNA-[3Haflatoxin B1 adduct formed by human liver microsomes in vitro also liberated the dihydrodiol in significant amount. The 2,3-oxide of aflatoxin B1 is a probable ultimate carcinogenic metabolite.  相似文献   

20.
This report describes the in vivo metabolism of a new class of naturally occurring biologically active phospholipids (1-alkyl-2-acetyl-sn-glycero-3-phosphocholines) that can cause hypotension and platelet aggregation. After intravenous injection in male rats, the acetylated ether phospholipid (1-[1′,2′-3H]alkyl) is rapidly cleared (T12 ?30 s) from blood and its metabolites are found in a variety of tissues. The tissues containing the highest levels of radioactivity are lung, liver, spleen, and kidney. Chromatographic results showed that a considerable portion of the active lipid is not readily catabolized in some of the major tissues examined; however, inactive metabolites were also found, mainly 1-alkyl-2-lyso-sn-glycero-3-phosphocholine and 1-alkyl-2-acyl-sn-glycero-3-phosphocholine; the latter has a long chain fatty acid at the sn-2 position instead of the acetate. The findings are consistent with our earlier data that show these same tissues have the most active enzyme systems for metabolizing 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号