首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We studied the acute effects of the inhalation of cigarette smoke on the central and peripheral airways of 35 open-chested and tracheotomized dogs by the direct measurement of central (Rc) and peripheral (Rp) airway resistances. Rc was calculated by dividing the pressure difference between a tracheal catheter and a retrograde catheter by mouth flow, and Rp was obtained by dividing the pressure difference between the retrograde catheter and a pleural capsule by mouth flow. The pleural capsule was attached to the pleural surface for alveolar pressure measurement. Rc and Rp were measured by the 2-Hz forced oscillation method. With lung inhalation of the smoke of two-thirds of one cigarette in vagi intact dogs, Rp increased to 239% of the control value and Rc increased to 112%. After bilateral vagotomy, Rp increased to 143% and Rc increased to 104%. Propranolol did not influence the results. Hexamethonium and atropine both blocked these responses when vagi were intact. When the upper trachea, larynx, and nasopharynx, which were completely blocked by vagotomy, were exposed to the smoke of two-thirds of a cigarette, Rp increased to 155% and Rc increased to 144%. We thus conclude that cigarette smoke causes a major increase in Rp, mainly via the vagal reflex and partially via the stimulation of parasympathetic ganglia (probably nicotine), and a minor increase in Rc via vagal reflex.  相似文献   

4.
5.
6.
We report that nicotine is responsible for both a blood-borne stimulation of the respiratory center and a direct effect on intrathoracic airway tone in dogs. We introduced cigarette smoke into the lungs of donor dogs and injected arterial blood obtained from them into the circulation of recipient dogs to show that a blood-borne material increased breathing and airway smooth muscle tone. Smoke from cigarettes containing 2.64 mg of nicotine was effective; that from cigarettes containing 0.42 mg of nicotine was not. Nicotine, in doses comparable to the amounts absorbed from smoke, also increased breathing and tracheal smooth muscle tension when injected into the vertebral circulation of recipient dogs. Finally, blockade of nicotine receptors in the central nervous system and in the airway parasympathetic ganglia inhibited the effects of inhaled cigarette smoke and intravenous nicotine on the respiratory center and on bronchomotor tone. We conclude that nicotine absorbed from cigarette smoke is the main cause of cigarette smoke-induced bronchoconstriction. It caused central respiratory stimulation, resulting in increased breathing and airway smooth muscle tension, and had a direct effect on airway parasympathetic ganglia as well.  相似文献   

7.
Hypoxic and hypercapnic ventilatory responses were measured after two levels of acute inhalation of cigarette smoke, minimum-level nicotine smoke (smoke 1) and nicotine-containing smoke (smoke 2), in 10 normal men. Chemosensitivity to hypoxia and hypercapnia was assessed both in terms of slope factors for ventilation-alveolar PO2 curve (A) and ventilation-alveolar PCO2 line (S) and of absolute levels of minute ventilation (VE) at hypoxia or hypercapnia. Ventilatory response to hypoxia and absolute level of VE at hypoxia significantly increased from 23.5 +/- 22.6 (SD) to 38.6 +/- 31.3 l . min-1 . Torr and from 10.6 +/- 2.5 to 12.6 +/- 3.5 l . min-1, respectively, during inhalation of cigarette smoke 2 (P less than 0.05). Inhalation of cigarette smoke 2 tended to increase the ventilatory response to hypercapnia, and the absolute level of VE at hypercapnia rose from 1.42 +/- 0.75 to 1.65 +/- 0.58 l . min-1 . Torr-1 and from 23.7 +/- 4.9 to 25.5 +/- 5.9 l . min-1, respectively, but these changes did not attain significant levels. Cigarette smoke 2 inhalation induced an increase in heart rate from 64.7 +/- 5.7 to 66.4 +/- 6.3 beats . min-1 (P less than 0.05) during room air breathing, whereas resting ventilation and specific airway conductance did not change significantly. On the other hand, acute inhalation of cigarette smoke 1 changed none of these variables. These results indicate that hypoxic chemosensitivity is augmented after cigarette smoke and that nicotine is presumed to act on peripheral chemoreceptors.  相似文献   

8.
S. P. Pietak  D. J. Delahaye 《CMAJ》1976,115(4):329-331
Respiratory distress with episodes of cyanosis, intercostal retraction and sibilant rhonchi occurred in a 2-year-old boy over a 48-hour period following serious smoke inhalation. Worsening of the child''s condition accompanied these findings, culminating in sudden loss of air entry, severe respiratory distress and loss of consciousness, which necessitated endotracheal intubation for resuscitation. Pronounced improvement followed removal of two pseudomembranous bronchial casts from the airway by suctioning, and thereafter recovery was uneventful.  相似文献   

9.
10.
11.
12.
13.
14.
The purpose of this investigation was to evaluate the effect of passive smoke inhalation on submaximal and maximal exercise performance. Eight female subjects ran on a motor driven treadmill for 20 min at 70% VO2max followed by an incremental change in grade until maximal work capacity was obtained. Each subject completed the exercise trial with and without the presence of residual cigarette smoke. Compared to the smokeless trials, the passive inhalation of smoke significantly reduced maximal oxygen uptake by 0.25 l X min-1 and time to exhaustion by 2.1 min. The presence of sidestream smoke also elevated maximal R value (1.01 vs 0.93), maximal blood lactate (6.8 vs 5.5 mM), and ratings of perceived exertion (17.4 vs 16.5 units). Passive inhalation of smoke during submaximal exercise significantly elevated the CO2 output (1.68 vs 1.58 l X min-1), R values (0.91 vs 0.86), heart rate (178 vs 172 bts X min-1) and rating of perceived exertion (13.8 vs 11.8 units). These findings suggest that passive inhalation of sidestream smoke adversely affects exercise performance.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号