首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the synthesis of a series of polycationic telomers, polycationic diblock and random polyethylene glycol (PEG)-grafted (co)telomers, and polycationic random tris(hydroxymethyl)methyl (THM) cotelomers, and on their in vitro gene transfer capability. These compounds were obtained by a telomerization process of various amino-, tetraethylene glycol-, or THM-acrylamide taxogens with thiols which might derive from PEG2000. For N/P ratios [N is the number of (co)telomer amine equivalents; P is the number of DNA phosphate equivalents] from 0.8 to 10, these (co)telomers condensed DNA, forming (co)teloplexes with mean sizes in the 85-330 nm range, even for an N/P ratio of 0.8 or 1.25. Some structure-transfection efficiency relationships were established. Among the new polycationic derivatives that were synthesized and investigated for their transfection efficiency, the (i)Bu-[NH](75) telomers and the diblock polyethylene glycol-conjugated PEG2000-[NH](n) telomers are very promising candidates for gene transfer purposes.  相似文献   

2.
Previously, we utilized (15)N transverse relaxation rates to demonstrate significant mobility in the linker region and conformational exchange in the regulatory domain of Ca(2+)-saturated cardiac troponin C bound to the isolated N-domain of cardiac troponin I (Gaponenko, V., Abusamhadneh, E., Abbott, M. B., Finley, N., Gasmi-Seabrook, G., Solaro, R.J., Rance, M., and Rosevear, P.R. (1999) J. Biol. Chem. 274, 16681-16684). Here we show a large decrease in cardiac troponin C linker flexibility, corresponding to residues 85-93, when bound to intact cardiac troponin I. The addition of 2 m urea to the intact cardiac troponin I-troponin C complex significantly increased linker flexibility. Conformational changes in the regulatory domain of cardiac troponin C were monitored in complexes with troponin I-(1-211), troponin I-(33-211), troponin I-(1-80) and bisphosphorylated troponin I-(1-80). The cardiac specific N terminus, residues 1-32, and the C-domain, residues 81-211, of troponin I are both capable of inducing conformational changes in the troponin C regulatory domain. Phosphorylation of the cardiac specific N terminus reversed its effects on the regulatory domain. These studies provide the first evidence that the cardiac specific N terminus can modulate the function of troponin C by altering the conformational equilibrium of the regulatory domain.  相似文献   

3.
Three isomeric complexes, trans-[PtCl2(NH3)(2-methylpiperidine)], trans-[PtCl2(NH3)(3-methylpiperidine)] and trans-[PtCl2(NH3)(4-methylpiperidine)], were prepared and their cytotoxicities against six ovarian cancer cell lines, three sensitive and three resistant to cisplatin, were measured. There were no significant differences in the cytotoxicities of the three isomers against these cell lines. The interactions of the three complexes with reduced glutathione (GSH) and with ubiquitin (Ub), as a model protein, were studied. The trans-[PtCl2(NH3)(2-methylpiperidine)] reacted approximately twice as slowly with GSH as did the other two isomers. In the 1:1 interactions of the three complexes with ubiquitin (Mr = 8565 amu), trans-[PtCl2(NH3)(3-methylpiperidine)] and trans-[PtCl2(NH3)(4-methylpiperidine)] attained 100% modification while trans-[PtCl2(NH3)(2-methylpiperidine)] reached only less than 50% modification. Trans-[PtCl2(NH3)(2-methylpiperidine)] reacts significantly less efficiently with GSH and proteins than the other two isomers yet this is not reflected in the cytotoxicity values. These results indicate that for these complexes, in these cell lines, cytosolic detoxification probably does not play a dominant role in determining the cytotoxicity of the complexes.  相似文献   

4.
Circular dichroism measurements were used to study the binding of fd gene 5 protein to fd DNA, to six polydeoxynucleotides (poly[d(A)], poly[d(T)], poly[d(I)], poly[d(C)], poly[d(A-T)], and the random copolymer poly[d(A,T)]), and to three oligodeoxynucleotides (d(pA)20, d(pA)7, and d(pT)7). Titrations of these DNAs with fd gene 5 protein were generally done in a low ionic strength buffer (5 mM Tris-HCl, pH 7.0 or 7.8) to insure tight binding, needed to obtain stoichiometric endpoints. By monitoring the CD of the nucleic acids above 250 nm, where the protein has no significant intrinsic optical activity, we found that there were two modes of binding, with the number of nucleotides covered by a gene 5 protein monomer (n) being close to either 4 or 3. These stoichiometries depended upon which polymer was titrated as well as upon the protein concentration. Single endpoints at nucleotide/protein molar ratios close to 3 were found during titrations of poly[d(T)] and fd DNA (giving n = 3.1 and 2.8 +/- 0.2, respectively), while CD changes with two apparent endpoints at nucleotide/protein molar ratios close to 4 and approximately 3 were found during titrations of poly[d(A)], poly[d(I)], poly[d(A-T)], and poly[d(A,T)] (with the first endpoints giving n = 4.1 4.0, 4.0, and 4.1 +/- 0.3, respectively). Calculations showed that the CD changes we observed during these latter titrations were consistent with a switch between two non-interacting binding modes of n = 4 and n = 3. We found no evidence for an n = 5 binding mode. One implication of our results is that the Brayer and McPherson model for the helical gene 5 protein-DNA complex, which has 5 nucleotides bound per protein monomer (G. Brayer and A. McPherson, J. Biomol. Struct. and Dyn. 2, 495-510, 1984), cannot be correct for the detailed solution structure of the complex. We interpreted the CD changes above 250 nm upon binding of the gene 5 protein to single-stranded DNAs to be the result of a slight unstacking of the bases, along with a significant alteration of the CD contributions of the individual nucleotides in the case of A-and/or T-containing DNAs. Interestingly, CD contributions attributed to nearest-neighbor interactions in free poly[d(A-T)], poly[d(A,T)], poly[d(A)], and poly[d(T)] were partially maintained in the CD spectra of the protein-saturated polymers, so that neighboring nucleotides, when bound to the protein at 20 degrees C, appeared to interact with one another in much the same manner as in the free polymers at 50 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Complexes of the general structure cis-[PtX(2)(hydrazide)(2)] and cis-[PtX(2)NH(3)(hydrazide)], where X=Cl(-), Br(-) and I(-), and hydrazide=cyclohexylcarboxylic acid hydrazide (chcah), cyclopentylcarboxylic acid hydrazide (cpcah), 3-aminocyclohexanspiro-5-hydantoin (achsh) and 3-aminocyclopentanspiro-5-hydantoin (acpsh), were investigated with respect to aqueous stability, DNA platination rates and cytotoxic activity on a panel of seven human cancer cell lines as well as a cisplatin-resistant cell line. Stabilities in aqueous solution, determined by RP-HPLC and UV-Vis methods, were highly dependent on the type of halide ligand, with stability decreasing in the order I(-)>Cl(-)>Br(-). Added chloride (100 mM) only stabilized the dichloro-Pt(II) complexes containing the hydrazide as part of a hydantoin ring (i.e., achsh). Platination of calf thymus DNA determined by AAS was most rapid with dichloro-Pt(II) complexes containing achsh ligand. The mixed-amine dichloro-Pt(II) complexes with either chcah or cpcah ligands also platinated DNA >80%, but at a slower rate, while dihydrazide dichloro-Pt(II) complexes with either chcah or cpcah ligands resulted in <25% DNA platination at 24 h. cis-[PtX(2)(hydrazide)(2)], where hydrazide=chcah or cpcah, were the most potent compounds (chcah>cpcah), but activity was independent of the halide ligand (I(-)=Cl(-)=Br(-)). These complexes showed no cross-resistance with cisplatin, but they also showed little differentiation in potency over the seven cell lines. Complexes with the hydantoin ligands achsh and acpsh were inactive in all cell lines. Thus, neither stability in aqueous media nor covalent binding to DNA are correlated with biological activity, suggesting that cis-dihydrazide Pt(II) complexes act by a unique mechanism of action.  相似文献   

7.
The interactions of four novel silicon(IV) phthalocyanines (SiPc), namely SiPc[OC(3)H(5)(NMe(2))(2)](2) (1), SiPc[OC(3)H(5)(NMe(2))(2)](OMe) (2), {SiPc[OC(3)H(5)(NMe(3))(2)](2)}I(4) (3), and {SiPc[OC(3)H(5)(NMe(3))(2)](OMe)}I(2) (4) with human serum albumin (HSA), bovine serum albumin (BSA), and maleylated bovine serum albumin (mBSA) were studied by fluorescence spectroscopy. The fluorescence emission of the serum albumins was effectively quenched by these phthalocyanines mainly through a static quenching mechanism. The higher Stern-Volmer quenching constants for the unsymmetrically substituted phthalocyanines 2 and 4 suggested that they have a stronger interaction with these proteins than the symmetrically substituted analogues 1 and 3. A series of non-covalent BSA or mBSA conjugates of these phthalocyanines were also prepared and evaluated for their in vitro photodynamic activity against HepG2 human hepatocarcinoma cells. The bioconjugation could enhance the photocytotoxicity of 1 and 4 by up to eight folds, but the effects on 2 and 3 were negligible. The results could be partly explained by two counter-balancing effects, namely the enhanced uptake and increased aggregation tendency of phthalocyanine due to BSA conjugation. As shown by absorption spectroscopy, the tetracationic phthalocyanine 3 was significantly aggregated in the protein cavity and its photocytotoxicity remained the lowest among the four photosensitizers.  相似文献   

8.
[Ag(2)(NH(3))(2)(salH)(2)] (salH(2)=salicylic acid) was synthesised from salicylic acid and Ag(2)O in concentrated aqueous NH(3) and the dimeric Ag(I) complex was characterised using X-ray crystallography. The complex is centrosymmetric with each metal coordinated to a salicylate carboxylate oxygen and to an ammonia nitrogen atom in an almost linear fashion. The two [Ag(NH(3))(salH)] units in the complex are linked by an Ag-Ag bond. Whilst metal-free salH(2) did not prevent the growth of the fungal pathogen Candida albicans [Ag(2)(NH(3))(2)(salH)(2)], [Ag(2)(salH)(2)] and some simple Ag(I) salts greatly inhibited cell reproduction. SalH(2), [Ag(2)(NH(3))(2)(salH)(2)] [Ag(2)(salH)(2)] and AgClO(4) produced a dose-dependent cytotoxic response against the three human derived cancer cell lines, Cal-27, Hep-G2 and A-498, with the Ag(I)-containing reagents being the most effective.  相似文献   

9.
The effect of differences in nitrogen (N) availability and source on growth and nitrogen metabolism at different atmospheric CO(2) concentrations in Prosopis glandulosa and Prosopis flexuosa (native to semiarid regions of North and South America, respectively) was examined. Total biomass, allocation, N uptake, and metabolites (e.g., free NO(3)(-), soluble proteins, organic acids) were measured in seedlings grown in controlled environment chambers for 48 d at ambient (350 ppm) and elevated (650 ppm) CO(2) and fertilized with high (8.0 mmol/L) or low (0.8 mmol/L) N (N(level)), supplied at either 1 : 1 or 3 : 1 NO(3)(-) : NH(4)(+) ratios (N(source)). Responses to elevated CO(2) depended on both N(level) and N(source), with the largest effects evident at high N(level). A high NO(3)(-) : NH(4)(+) ratio stimulated growth responses to elevated CO(2) in both species when N was limiting and increased the responses of P. flexuosa at high N(level). Significant differences in N uptake and metabolites were found between species. Seedlings of both species are highly responsive to N availability and will benefit from increases in CO(2), provided that a high proportion of NO(3)- to NH(4)-N is present in the soil solution. This enhancement, in combination with responses that increase N acquisition and increases in water use efficiency typically found at elevated CO(2), may indicate that these semiarid species will be better able to cope with both nutrient and water deficits as CO(2) levels rise.  相似文献   

10.
Short- and long-term responses of inorganic N pools and plant-atmosphere NH(3) exchange to changes in external N supply were investigated in 11-week-old plants of two grass species, Lolium perenne and Bromus erectus, characteristic of N-rich and N-poor grassland ecosystems, respectively. A switch of root N source from NO(-)(3)to NH(4)(+) caused within 3 h a 3- to 6-fold increase in leaf apoplastic NH(4)(+) concentration and a simultaneous decrease in apoplastic pH of about 0.4 pH units in both species. The concentration of total extractable leaf tissue NH(4)(+) also increased two to three times within 3 h after the switch. Removal of exogenous NH(4)(+) caused the apoplastic NH(4)(+) concentration to decline back to the original level within 24 h, whereas the leaf tissue NH(4)(+)concentration decreased more slowly and did not reach the original level in 48 h. After growing for 5 weeks with a steady-state supply of NO(-)(3)or NH(4)(+), L. perenne were in all cases larger, contained more N, and utilized the absorbed N more efficiently for growth than B. erectus, whereas the two species behaved oppositely with respect to tissue concentrations of NO(-)(3), NH(4)(+), and total N. Ammonia compensation points were higher for B. erectus than for L. perenne and were in both species higher for NH(4)(+)- than for NO(-)(3)-grown plants. Steady-state levels of apoplastic NH(4)(+), tissue NH(4)(+), and NH(3) emission were significantly correlated. It is concluded that leaf apoplastic NH(4)(+) is a highly dynamic pool, closely reflecting changes in the external N supply. This rapid response may constitute a signaling system coordinating leaf N metabolism with the actual N uptake by the roots and the external N availability.  相似文献   

11.
12.
The aim of this work is to study the binding of nickel ions to hexahistidine (His(6)) combining potentiometric titrations and spectroscopic (UV-Vis and circular dichroism) determinations in order to establish the species distribution as a function of the pH, their stoichiometry, stability and geometry. For comparative purposes, the same procedure was applied to the Ni-histidine (His) system. His behaves as a tridentate ligand, coordinating the carboxyl group, the imidazole and the amino nitrogen atoms to Ni(II) ions in an octahedral coordination and a bis(histidine) complex is formed at pH higher than 5. For the Ni-His(6) system, the complex formation starts at pH 4 and five different species (Ni(His(6))H, Ni(His(6)), Ni(n)(His(6))(n), Ni(n)(His(6))(n)H(-n/2), Ni(n)(His(6))(n)H(-n)) are formed as a function of the pH. Ni(His(6))H involves the coordination of the imidazole nitrogen and a deprotonated amide nitrogen (N(Im), N(-)) resulting in an octahedral geometry. In Ni(His(6)), an imidazole nitrogen is deprotonated and coordinated (2N(Im), N(-)) to the metal ion with a square planar geometry. The aggregated forms result from the extra Ni-N(Im) coordination, resulting in a 4N square planar geometry that is stabilized by inter/intramolecular hydrogen bonds. This coordination mode is not altered during the deprotonation steps from Ni(n)(His(6))(n).  相似文献   

13.
The 1H NMR relaxation effects produced by paramagnetic Cr(III) complexes on nucleoside 5'-mono- and -triphosphates in D2O solution at pH' = 3 were measured. The paramagnetic probes were [Cr(III)(H2O)6]3+, [Cr(III)(H2O)3(HATP)], [Cr(III)(H2O)3(HCTP)] and [Cr(III)(H2O)3(UTP)-, while the matrix nucleotides (0.1 M) were H2AMP, HIMP-, and H2ATP2-. For the aromatic base protons, the ratios of the transverse to longitudinal paramagnetic relaxation rates (R2p/R1p) for the [Cr(III)(H2O)6]3+/H2ATP2-, [Cr(III)(H2O)3(HATP)]/H2ATP2-, [Cr(III)(H2O)3(HCTP)]/H2ATP2 and [Cr(III)(H2O)3(UTP)]-/H2ATP2 systems were below 2.33 so the dipolar term predominates. For a given nucleotide, R1p for the purine H(8) signal was larger than for the H(2) signal with the [Cr(III)(H2O)6]3+ probe, while R1p for the H(2) signal was larger with all the other Cr(III) probes. Molecular mechanics computations on the [Cr(III)(H2O)4(HPP)(alpha,beta)], [Cr(III)(NH3)4(HPP)(alpha,beta)], [Co(III)(NH3)3(H2PPP)(alpha,beta,gamma)] and [Co(III)(NH3)4(HPP)(alpha,beta)] complexes gave calculated energy-minimized geometries in good agreement with those reported in crystal structures. The molecular mechanics force constants found were then used to calculate the geometry of the inner sphere [Cr(III)(H2O)6]3+ and [Cr(III)(H2O)3(HATP)(alpha,beta,gamma)] complexes as well as the structures of the outer sphere [Cr(III)(H2O)6]3(+)-(H2AMP) and [Cr(III)(H2O)6]-(HIMP)- species. The gas-phase structure of the [Cr(III)(H2O)3(HATP)(alpha,beta,gamma)] complex shows the existence of a hydrogen bond interaction between a water ligand and the adenine N(7)(O...N = 2.82 A). The structure is also stabilized by intramolecular hydrogen bonds involving the -O(2')H group and the adenine N(3) (O...N = 2.80 A) as well as phosphate oxygen atoms and a water molecule (O...O = 2.47 A). The metal center has an almost regular octahedral coordination geometry. The structures of the two outer-sphere species reveal that the phosphate group interacts strongly with the hexa-aquochromium probe. In both complexes, the nucleotides have a similar "anti" conformation around the N(9)-C(1') glycosidic bond. However, a very important difference characterizes the two structures. For the (HIMP)- complex, strong hydrogen bond interactions exist between one and two water ligands and the inosine N(7) and O(6) atoms, respectively (O...O = 2.63 A; O...N = 2.72, 2.70 A). For the H2AMP complex, the [Cr(III)(H2O)6]3+ cation does not interact with N(7) since it is far from the purine system. Hydrogen bonds occur between water ligands and phosphate oxygens. The Cr-H(8) and Cr-H(2) distances revealed by the energy-minimized geometries for the two outer sphere species were used to calculate the R1p values for the H(8) and H(2) signals for comparison with the observed R1p values: 0.92(c), 1.04(ob) (H(8)) and 0.06(c), 0.35(ob) (H(2)) for H2AMP; and 3.76(c), 4.53(ob) (H(8)) and 0.16(c), 0.77(ob) s-1 (H(2)) for HIMP-.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
o-Hydroxydithiobenzoate (o-HOdtb) forms complexes, [Ni(o-HOdtb)(o-HOdtbS)], [Cu(o-Odtb)], [Co(o-HOdtb)(3)], [Fe(2)(o-Odtb)(3)], [Bu(n)(4)N][V(o-Odtb)(3)] and [Bu(n)(4)N][Zn(o-HOdtb)(3)] which were characterized by analyses and physicochemical studies. The bonding sites of o-HOdtb and the geometry of the complexes were determined by magnetic susceptibility, IR, ESR, NMR, M?ssbauer and electronic spectral data. The structure of [Bu(n)(4)N][Zn(o-HOdtb)(3)] and H(2)C(o-HOdtb)(2) were assigned by single crystal X-ray diffraction studies. The monomeric complex [Bu(n)(4)N][Zn(o-HOdtb)(3)] crystallizes in Pna2(1) space group. The M?ssbauer spectra of [Fe(2)(o-Odtb)(3)] at 298 and 80K suggest the presence of high spin iron(III) with an S=5/2 state. All the metal complexes were observed to inhibit the growth of tumor in vitro, whereas, ligand did not. In vivo administration of these complexes resulted in prolongation of survival of tumor-bearing mice. Tumor bearing mice administered with metal complexes showed reversal of tumor growth associated induction of apoptosis in lymphocytes. The paper discusses the possible mechanisms and therapeutic implication of the ligand and its metal complexes in tumor regression and tumor growth associated immunosuppression.  相似文献   

15.
Three potential anticancer agents {trans-[PtCl(2)(NH(3))(thiazole)], cis-[PtCl(2)(NH(3))(piperidine)], and PtCl(2)(NH(3))(cyclohexylamine) (JM118)} were explored and compared with cisplatin and the inactive [PtCl(dien)](+) complex. Basic electronic properties, bonding and stabilization energies were determined, and thermodynamic and kinetic parameters for the aquation reaction were estimated at the B3LYP/6-311++G(2df,2pd) level of theory. Since the aquation process represents activation of these agents, the obtained rate constants were compared with the experimental IC(50) values for several tumor cells. Despite the fact that the processes in which these drugs are involved and the way in which they affect cells are very complex, some correlations can be deduced.  相似文献   

16.
The new iridium(III) complex, imidazolium[trans(DMSO,imidazole)tetrachloroiridate(III)], (I) (DMSO=dimethyl sulfoxide), and the orange form of [(DMSO)(2)H][trans(DMSO)(2)tetrachloroiridate(III)], (II) have been prepared and characterized, both in the solid state and in solution, by X-ray diffraction and by various physicochemical techniques. Single crystal X-ray diffraction studies point out that complex (II) is isomorphous to the ruthenium(III) analogue, [(DMSO)(2)H][trans-RuCl(4)(DMSO)(2)], (III). Crystallographic data are the following: a=16.028(2) A, b=24.699(3) A, c=8.262(1) A, in space group Pbca (Z=8) for (imidazolium)[trans(DMSO,imidazole)tetrachloroiridate(III)], (I); and a=9.189(2) A, b=16.511(4) A, c=14.028(3) A, beta=100.82(2) degrees in space group P2/n (Z=4) for [(DMSO)(2)H][trans(DMSO)(2)tetrachloroiridate(III)], (II). Visible absorption spectra show that both complexes are stable for several days, at pH 7.4, at room temperature. No significant chloride hydrolysis is observed, even at high temperature (70 degrees C), over 24 h. The extreme stability of these iridium(III) complexes within a physiological buffer was further assessed by (1)H NMR; in addition, cyclic voltammetry measurements evidenced a high stability of the oxidation state +3. Preliminary biological studies show that both complexes do not bind appreciably bovine serum albumin nor inhibit significantly the proliferation of representative human tumor cell lines, suggesting that hydrolysis of coordinated chlorides is a crucial feature for the biological properties and the antitumor activity of the parent ruthenium(III) complexes.  相似文献   

17.
We have studied the ability of several bioorganometallic clusters [(mu-H)Os(3)(CO)(9)(L)(mu(3)-eta(2)-(Q-H))], where L = [P(C(6)H(4)SO(3)Na)(3)] or [P(OCH(2)CH(2)NMe(3)I)(3)], and Q = quinoline, 3-aminoquinoline, quinoxaline or phenanthridine, of inhibiting telomerase, a crucial enzyme for cancer progression. In general, quinolines have shown interesting biological properties, especially in inhibiting enzymes. For example, the 2,3,7-trichloro-5-nitroquinoxaline (TNQX) exhibited strong anti-telomerase activity in vitro. Among the quinoline-clusters under study, only the negatively charged ones (by virtue of the sulfonated phosphines) exhibited good anti-telomerasic activity on semi-purified enzyme in a cell-free assay, while they were ineffective in vitro on Taq, a different DNA-polymerase. On the contrary, the treatment of breast cancer MCF-7 cell line did not evidence any activity of these clusters, suggesting a low aptitude for crossing cell membrane. Furthermore, all clusters exhibited non-specific, acute cytotoxicy, probably due to accumulation on cell membranes by virtue of their amphiphilic character. A detailed study of Os uptake and accumulation in MCF-7 cells supported this hypothesis.  相似文献   

18.
Polynuclear platinum compounds demonstrate many novel phenomena in their interactions with DNA and proteins as well as novel anti-cancer activities. Previous studies indicated that the high positive charge and the non-coordinated "central linker" of the polynuclear compounds could have major contributions to these features. Therefore, a series of non-covalent polynuclear platinum complexes, [[Pt(NH(3))(3)](2)-mu-Y](n+) (Y=polyamine linker or [trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2)]) was synthesized and the DNA interactions of these platinum complexes were investigated. The conformational changes induced by these compounds in polymer DNA were studied by circular dichroism and the reversibility of the transition was tested by subsequent titration with the DNA intercalating agent ethidium bromide (EtBr). Fluorescent quenching was also used to assess the ability of EtBr to intercalate into A and Z-DNA induced by the compounds. The non-covalent polynuclear platinum complexes induced both B-->A and B-->Z conformational changes in polymer DNA. These conformational changes were partially irreversible. The platinum compound with the spermidine linker, [[Pt(NH(3))(3)](2)-mu-spermidine-N(1),N(8)]Cl(5).2H(2)O, is more efficient in inducing the conformational changes of DNA and it is less reversible than complexes with other linkers. The melting point study showed that the non-covalent polynuclear platinum complexes stabilized the duplex DNA and the higher the electrical charge of the complexes the greater the stabilization observed.  相似文献   

19.
G F Gerard 《Biochemistry》1981,20(2):256-265
The mechanism of action of the ribonuclease H (RNase H) activity associated with Moloney murine leukemia virus RNA-directed DNA polymerase (RNase H I) and the two-subunit (alpha beta) form of avian myeloblastosis virus DNA polymerase were compared by utilizing the model substrate (A)n.(dT)n and polyacrylamide gel electrophoresis in 7 M urea to analyze digestion products. Examination on 25% polyacrylamide gels revealed that a larger proportion of the RNase H I oligonucleotide products generated by limited digestion of [3H](A)(1100).(dT)n were acid insoluble (15-26 nucleotides long) than acid soluble (less than 15 nucleotides long), while the opposite was true for products generated by alpha beta RNase H. RNase H I was capable of attacking RNA in RNA.DNA in the 5' to 3' and 3' to 5' directions, as demonstrated by the use of [3H,3'- or 5'-32P](A)(380).(dT)n and cellulose--[3H](A)n.(dT)n. Both RNase H I and alpha beta RNase H degraded [3H]-(A)n.(dT)n with a partially processive mechanism, based upon classical substrate competition experiments and analyses of the kinetics of degradation of [3H,3'- or 5'-32P](A)(380).(dT)n. That is, both enzymes remain bound to a RNA.DNA substrate through a finite number of hydrolytic events but dissociate before the RNA is completely degraded. Both RNase H I and alpha beta RNase H were capable of degrading [14C](A)n in [3H](C)n-[14C](A)n-[32P](dA)n.(dT)n, suggesting that retroviral RNase H is capable of removing the tRNA primer at the 5' terminus of minus strand DNA at the appropriate time during retroviral DNA synthesis in vitro.  相似文献   

20.
Due to resistance by Plasmodium falciparum, the most virulent strain of the four species of human malaria parasites, to most currently used antimalarial drugs, development of new effective antimalarials is urgently needed. Derivatives of 9-anilinoacridine, an antitumor drug, have been shown to inhibit P. falciparum growth in culture and to inhibit parasite DNA topoisomerase II activity in vitro. Using KCl-SDS precipitation assay to detect the presence of protein-DNA complexes within parasite cells, an indicator of DNA topoisomerase II inactivation, derivatives containing 3,6-diNH(2) substitutions with 1'-electron donating (NMe(2), CH(2)NMe(2), NHSO(2)Me, OH, OMe), and 1'-electron withdrawing (SO(2)NH(2)) groups produced protein-DNA complexes. However, the antimalarial pyronaridine, 9-anilinoazaacridine, did not generate protein-DNA complexes, although it was capable of inhibiting P. falciparum DNA topoisomerase II activity in vitro. These results should prove useful in future designs of novel antimalarial compounds directed against parasite DNA topoisomerase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号