首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Current vaccines designed to promote humoral immunity to respiratory virus infections also induce potent CD4+ T cell memory. However, little is known about the impact of primed CD4+ T cells on the immune response to heterologous viruses that are serologically distinct, but that share CD4+ T cell epitopes. In addition, the protective capacity of primed CD4+ T cells has not been fully evaluated. In the present study, we addressed these two issues using a murine Sendai virus model. Mice were primed with an HN421-436 peptide that represents the dominant CD4+ T cell epitope on the hemagglutinin-neuraminidase (HN) of Sendai virus. This vaccination strategy induced strong CD4+ T cell memory to the peptide, but did not induce Abs specific for the Sendai virus virion. Subsequent Sendai virus infection of primed mice resulted in 1) a substantially accelerated virus-specific CD4+ T cell response in the pneumonic lung; 2) enhanced primary antiviral Ab-forming cell response in the mediastinal lymph nodes; and 3) accelerated viral clearance. Interestingly, the virus-specific CD8+ T cell response in the lung and the development of long-term memory CD8+ T cells in the spleen were significantly reduced. Taken together, our data demonstrate that primed CD4+ T cells, in the absence of pre-existing Ab, can have a significant effect on the subsequent immune responses to a respiratory virus infection.  相似文献   

2.
Previous studies have shown that vaccine-primed CD4(+) T cells can mediate accelerated clearance of respiratory virus infection. However, the relative contributions of Ab and CD8(+) T cells, and the mechanism of viral clearance, are poorly understood. Here we show that control of a Sendai virus infection by primed CD4(+) T cells is mediated through the production of IFN-gamma and does not depend on Ab. This effect is critically dependent on CD8(+) cells for the expansion of CD4(+) T cells in the lymph nodes and the recruitment of memory CD4(+) T cells to the lungs. Passive transfer of a CD8(+) T cell supernatant into CD8(+) T cell-depleted, hemagglutinin-neuraminidase (HN)(421-436)-immune muMT mice substantially restored the virus-specific memory CD4(+) response and enhanced viral control in the lung. Together, the data demonstrate for the first time that in vivo primed CD4(+) T cells have the capacity to control a respiratory virus infection in the lung by an Ab-independent mechanism, provided that CD8(+) T cell "help" in the form of soluble factor(s) is available during the virus infection. These studies highlight the importance of synergistic interactions between CD4(+) and CD8(+) T cell subsets in the generation of optimal antiviral immunity.  相似文献   

3.
The host immune response is believed to contribute to the severity of pulmonary disease induced by acute respiratory syncytial virus (RSV) infection. Because RSV-induced pulmonary disease is associated with immunopathology, we evaluated the role of IL-10 in modulating the RSV-specific immune response. We found that IL-10 protein levels in the lung were increased following acute RSV infection, with maximum production corresponding to the peak of the virus-specific T cell response. The majority of IL-10-producing cells in the lung during acute RSV infection were CD4(+) T cells. The IL-10-producing CD4(+) T cells included Foxp3(+) regulatory T cells, Foxp3(-) CD4(+) T cells that coproduce IFN-γ, and Foxp3(-) CD4(+) T cells that do not coproduce IFN-γ. RSV infection of IL-10-deficient mice resulted in more severe disease, as measured by increased weight loss and airway resistance, as compared with control mice. We also observed an increase in the magnitude of the RSV-induced CD8(+) and CD4(+) T cell response that correlated with increased disease severity in the absence of IL-10 or following IL-10R blockade. Interestingly, IL-10R blockade during acute RSV infection altered CD4(+) T cell subset distribution, resulting in a significant increase in IL-17A-producing CD4(+) T cells and a concomitant decrease in Foxp3(+) regulatory T cells. These results demonstrate that IL-10 plays a critical role in modulating the adaptive immune response to RSV by limiting T-cell-mediated pulmonary inflammation and injury.  相似文献   

4.
Interleukin-1alpha (IL-1alpha) and IL-1beta are proinflammatory cytokines, which induce a plethora of genes and activities by binding to the type 1 IL-1 receptor (IL-1R1). We have investigated the role of IL-1 during pulmonary antiviral immune responses in IL-1R1(-/-) mice infected with influenza virus. IL-1R1(-/-) mice showed markedly reduced inflammatory pathology in the lung, primarily due to impaired neutrophil recruitment. Activation of CD4(+) T cells in secondary lymphoid organs and subsequent migration to the lung were impaired in the absence of IL-1R1. In contrast, activation of virus-specific cytotoxic T lymphocytes and killing of virus-infected cells in the lung were intact. Influenza virus-specific immunoglobulin G (IgG) and IgA antibody responses were intact, while the IgM response was markedly reduced in both serum and mucosal sites in IL-1R1(-/-) mice. We found significantly increased mortality in the absence of IL-1R1; however, lung viral titers were only moderately increased. Our results demonstrate that IL-1alpha/beta mediate acute pulmonary inflammatory pathology while enhancing survival during influenza virus infection. IL-1alpha/beta appear not to influence killing of virus-infected cells but to enhance IgM antibody responses and recruitment of CD4(+) T cells to the site of infection.  相似文献   

5.
Cellular and humoral immunity against vaccinia virus infection of mice   总被引:8,自引:0,他引:8  
Despite the widespread use of vaccinia virus (VV) as a vector for other Ags and as the smallpox vaccine, there is little information available about the protective components of the immune response following VV infection. In this study, protection against wild-type VV was evaluated in mice with respect to the relative contributions of CD8(+) T cells vs that of CD4(+) T cells and Ab. C57BL/6 mice primed with the Western Reserve strain of VV mount significant IgM and IgG Ab responses, specific cytotoxic T cell responses, IFN-gamma responses in CD4(+) and CD8(+) T cells, and effectively clear the virus. This protection was abrogated by in vivo depletion of CD4(+) T cells or B cells in IgH(-/-) mice, but was not sensitive to CD8(+) T cell depletion alone. However, a role for CD8(+) T cells in primary protection was demonstrated in MHC class II(-/-) mice, where depleting CD8(+) T cells lead to increase severity of disease. Unlike control MHC class II(-/-) mice, the group depleted of CD8(+) T cells developed skin lesions on the tail and feet and had adrenal necrosis. Adoptive transfer experiments also show CD8(+) T cells can mediate protective memory. These results collectively show that both CD4(+) and CD8(+) T cell-mediated immunity can contribute to protection against VV infection. However, CD4(+) T cell-dependent anti-virus Ab production plays a more important role in clearing virus following acute infection, while in the absence of Ab, CD8(+) T cells can contribute to protection against disease.  相似文献   

6.
Previous studies have shown that heterologous viral infections have a significant impact on pre-existing memory T cell populations in secondary lymphoid organs through a combination of cross-reactive and bystander effects. However, the impact of heterologous viral infections on effector/memory T cells in peripheral sites is not well understood. In this study, we have analyzed the impact of a heterologous influenza virus infection on Sendai virus-specific CD8(+) effector/memory cells present in the lung airways. The data show a transient increase in the numbers of Sendai virus nucleoprotein 324-332/K(b)-specific CD8(+) memory T cells in the airways of the influenza-infected mice peaking around day 4 postinfection. Intratracheal transfer studies and 5-bromo-2'-deoxyuridine incorporation demonstrate that this increase is due to the recruitment of resting memory cells into the airways. In addition, the data show that these immigrating memory cells are phenotypically distinct from the resident memory T cells of the lung airways. A similar influx of nonproliferating Sendai virus nucleoprotein 324-332/K(b)-specific CD8(+) memory T cells is also induced by a secondary (homologous) infection with Sendai virus. Together, these data suggest that inflammation can accelerate memory T cell migration to nonlymphoid tissues and is a part of the normal recall response during respiratory infections.  相似文献   

7.
Osorio Y  Ghiasi H 《Journal of virology》2003,77(10):5774-5783
The adjuvant effects of cytokines in humoral and cell-mediated immunity to herpes simplex virus type 1 (HSV-1) have been examined in mice using HSV-1 recombinant viruses expressing murine interleukin-2 (IL-2), IL-4, or gamma interferon (IFN-gamma) gene. Groups of naive BALB/c mice were immunized intraperitoneally with one or three doses of the HSV-1 recombinant viruses expressing IL-2, IL-4, or IFN-gamma or with parental control virus. Despite similar replication kinetics, these three recombinant viruses elicited different immune responses to HSV-1 on immunization. Immunization with the recombinant virus expressing IL-4 elicited a humoral response of greater magnitude than immunization with the recombinant viruses expressing IL-2 or IFN-gamma or with parental virus. In contrast, immunization with recombinant virus expressing IL-2 elicited a higher cytotoxic T-cell response than immunization with viruses expressing IL-4 or IFN-gamma. Stimulation in vitro of splenocytes obtained from the mice immunized with UV-inactivated HSV-1 McKrae resulted in a T(H)1 pattern of cytokine expression irrespective of the recombinant virus used in the immunization. As observed for the parental virus, both CD4(+) and CD8(+) T cells contributed equally to the production of IL-2 by the splenocytes of mice immunized with any of the three recombinant viruses. However, the pattern of IFN-gamma production by CD4(+) and CD8(+) T cells differed according to the recombinant virus used. After lethal ocular challenge, all immunized mice were protected completely against death and manifestations of eye disease caused by HSV-1, which are typical responses in unimmunized mice. Mice immunized with IL-4-expressing virus cleared the virus from their eyes more rapidly than mice immunized with IL-2- or IFN-gamma-expressing virus. Taken together, our results suggest that, in contrast to IFN-gamma which did not exhibit an adjuvant effect, both IL-4 and IL-2 act as adjuvants in immunization with HSV, with IL-4 showing greater efficacy.  相似文献   

8.
The role of Th2/CD4 T cells, which secrete IL-4, IL-5, and IL-13, in allergic disease is well established; however, the role of CD8(+) T cells (allergen-induced airway hyperresponsiveness (AHR) and inflammation) is less clear. This study was conducted to define the role of Ag-primed CD8(+) T cells in the development of these allergen-induced responses. CD8-deficient (CD8(-/-)) mice and wild-type mice were sensitized to OVA by i.p. injection and then challenged with OVA via the airways. Compared with wild-type mice, CD8(-/-) mice developed significantly lower airway responsiveness to inhaled methacholine and lung eosinophilia, and exhibited decreased IL-13 production both in vivo, in the bronchoalveolar lavage (BAL) fluid, and in vitro, following Ag stimulation of peribronchial lymph node (PBLN) cells in culture. Reconstitution of sensitized and challenged CD8(-/-) mice with allergen-sensitized CD8(+) T cells fully restored the development of AHR, BAL eosinophilia, and IL-13 levels in BAL and in culture supernatants from PBLN cells. In contrast, transfer of naive CD8(+) T cells or allergen-sensitized CD8(+) T cells from IL-13-deficient donor mice failed to do so. Intracellular cytokine staining of lung as well as PBLN T cells revealed that CD8(+) T cells were a source of IL-13. These data suggest that Ag-primed CD8(+) T cells are required for the full development of AHR and airway inflammation, which appears to be associated with IL-13 production from these primed T cells.  相似文献   

9.
The role and interdependence of CD8+ and CD4+ alpha beta-T cells in the acute response after respiratory infection with the murine parainfluenza type 1 virus, Sendai virus, has been analyzed for H-2b mice. Enrichment of CD8+ virus-specific CTL effectors in the lungs of immunologically intact C57BL/6 animals coincided with the clearance of the virus from this site by day 10 after infection. Removal of the CD4+ T cells by in vivo mAb treatment did not affect appreciably either the recruitment of CD8+ T cells to the infected lung, or their development into virus-specific cytotoxic effectors. In contrast, depletion of the CD8+ subset delayed virus clearance, although most mice survived the infection. Transgenic H-2b F3 mice homozygous (-/-) for a beta 2 microglobulin (beta 2-m) gene disruption, which lack both class I MHC glycoproteins and mature CD8+ alpha beta-T cells, showed a comparable, delayed clearance of Sendai virus from the lung. Virus-specific, class II MHC-restricted CTL were demonstrated in both freshly isolated bronchoalveolar lavage populations and cultured lymph node and spleen tissue from the beta 2-m (-/-) transgenics. Treatment of the beta 2-m (-/-) mice with the mAb to CD4 led to delayed virus clearance and death, which was also the case for normal mice that were depleted simultaneously of the CD4+ and CD8+ subsets. These results indicate that, although classical class I MHC-restricted CD8+ cytotoxic T cells normally play a dominant role in the recovery of mice acutely infected with Sendai virus, alternative mechanisms involving CD4+ T cells exist and can compensate, in time, for the loss of CD8+ T cell function.  相似文献   

10.
The acquisition of long-term survival potential by activated T lymphocytes is essential to ensure the successful development of a memory population in the competitive environment of the lymphoid system. The factors that grant competitiveness for survival to primed T cells are poorly defined. We examined the role of IL-2 signals during priming of CD4(+) T cells in the induction of a long-lasting survival program. We show that Ag-induced cycling of CD4(+) IL-2(-/-) T cells is independent of IL-2 in vitro. However, IL-2(-/-) T cells failed to accumulate in large numbers and develop in effector cells when primed in the absence of IL-2. More importantly, Ag-activated IL-2(-/-) T cells were unable to survive for prolonged periods of time after adoptive transfer in unmanipulated, syngeneic mice. IL-2(-/-) T cells exposed to IL-2 signals during priming, however, acquired a robust and long-lasting survival advantage over cells that cycled in the absence of IL-2. Interestingly, this IL-2-induced survival program was required for long-term persistence of primed IL-2(-/-) T cells in an intact lymphoid compartment, but was unnecessary in a lymphopenic environment. Therefore, IL-2 enhances competitiveness for survival in CD4(+) T cells, thereby facilitating the development of a memory population.  相似文献   

11.
CD4(+) T cells are thought to be critical in the maintenance of virus-specific CD8(+) cytotoxic T-cell (CTL) responses. In human immunodeficiency virus type 1 (HIV-1) infection, a selective decline in HIV-1-specific CTL as the CD4(+) T-cell count decreases has been reported. Using HLA-peptide tetrameric complexes, we show the presence at high frequency of HIV-1- and cytomegalovirus-specific CD8(+) T cells when the peripheral CD4(+) T-cell count was low or zero in three HIV-1-infected patients. No direct virus-specific CD8(+)-mediated effector activity was seen in these subjects, suggesting antigen unresponsiveness, although tetramer-sorted cells could be expanded in vitro in the presence of interleukin-2 into responsive effector cells. Thus, virus-specific CD8(+) T cells can be maintained in the peripheral circulation at high frequency in the absence of circulating peripheral CD4(+) T cells, but these cells may lack direct effector activity. Strategies designed to overcome this antigen unresponsiveness may be of value in therapies for the treatment of AIDS.  相似文献   

12.
CD28 plays crucial costimulatory roles in T cell proliferation, cytokine production, and germinal center response. Mice that are deficient in the inducible costimulator (ICOS) also have defects in cytokine production and germinal center response. Because the full induction of ICOS in activated T cells depends on CD28 signal, the T cell costimulatory capacity of ICOS in the absence of CD28 has remained unclear. We have clarified this issue by comparing humoral immune responses in wild-type, CD28 knockout (CD28 KO), and CD28-ICOS double-knockout (DKO) mice. DKO mice had profound defects in Ab responses against environmental Ags, T-dependent protein Ags, and vesicular stomatitis virus that extended far beyond those observed in CD28 KO mice. However, DKO mice mounted normal Ab responses against a T-independent Ag, indicating that B cell function itself was normal. Restimulated CD4(+) DKO T cells that had been primed in vivo showed decreased proliferation and reduced IL-4 and IL-10 production compared with restimulated CD4(+) T cells from CD28 KO mice. Thus, in the absence of CD28, ICOS assumes the major T cell costimulatory role for humoral immune responses. Importantly, CD28-mediated ICOS up-regulation is not essential for ICOS function in vivo.  相似文献   

13.
CD8(+) T-cell responses can be induced by DNA immunization, but little is known about the kinetics of these responses in vivo in the absence of restimulation or how soon protective immunity is conferred by a DNA vaccine. It is also unclear if CD8(+) T cells primed by DNA vaccines express the vigorous effector functions characteristic of cells primed by natural infection or by immunization with a recombinant live virus vaccine. To address these issues, we have used the sensitive technique of intracellular cytokine staining to carry out direct ex vivo kinetic and phenotypic analyses of antigen-specific CD8(+) T cells present in the spleens of mice at various times after (i) a single intramuscular administration of a plasmid expressing the nucleoprotein (NP) gene from lymphocytic choriomeningitis virus (LCMV), (ii) infection by a recombinant vaccinia virus carrying the same protein (vvNP), or (iii) LCMV infection. In addition, we have evaluated the rapidity with which protective immunity against both lethal and sublethal LCMV infections is achieved following DNA vaccination. The CD8(+) T-cell response in DNA-vaccinated mice was slightly delayed compared to LCMV or vvNP vaccinees, peaking at 15 days postimmunization. Interestingly, the percentage of antigen-specific CD8(+) T cells present in the spleen at day 15 and later time points was similar to that observed following vvNP infection. T cells primed by DNA vaccination or by infection exhibited similar cytokine expression profiles and had similar avidities for an immunodominant cytotoxic T lymphocyte epitope peptide, implying that the responses induced by DNA vaccination differ quantitatively but not qualitatively from those induced by live virus infection. Surprisingly, protection from both lethal and sublethal LCMV infections was conferred within 1 week of DNA vaccination, well before the peak of the CD8(+) T-cell response.  相似文献   

14.
Optimal expansion of influenza virus nucleoprotein (D(b)NP(366))-specific CD8(+) T cells following respiratory challenge of naive Ig(-/-) microMT mice was found to require CD4(+) T-cell help, and this effect was also observed in primed animals. Absence of the CD4(+) population was consistently correlated with diminished recruitment of virus-specific CD8(+) T cells to the infected lung, delayed virus clearance, and increased morbidity. The splenic CD8(+) set generated during the recall response in Ig(-/-) mice primed at least 6 months previously showed a normal profile of gamma interferon production subsequent to short-term, in vitro stimulation with viral peptide, irrespective of a concurrent CD4(+) T-cell response. Both the magnitude and the localization profiles of virus-specific CD8(+) T cells, though perhaps not their functional characteristics, are thus modified in mice lacking CD4(+) T cells.  相似文献   

15.
Sha Z  Compans RW 《Journal of virology》2000,74(11):4999-5005
Through cognate interaction between antigen-specific B-cell and CD4(+) alphabeta T cells, the CD4(+) alphabeta T cells secrete cytokines that initiate immunoglobulin (Ig) class switching from IgM to IgG. In this study, we show that formalin-inactivated influenza PR8 virus induces virus-specific IgM and IgG responses in the absence of CD4(+) T cells and that all four subclasses of IgG are produced. The immunized CD4-deficient mice were also found to be completely protected against lethal infection with live, pathogenic influenza virus. The ability of CD4(+) T-cell-deficient mice to generate these IgG responses was not found to be impaired when these mice were depleted of CD8(+) T cells with an anti-CD8 monoclonal antibody. In contrast, alphabeta T-cell-deficient mice (TCRbeta(-/-)) were not found to produce significant amounts of IgG upon immunization with formalin-inactivated PR8 virus. These results suggest that CD4(-) CD8(-) double-negative alphabeta T cells are playing a role in regulating Ig class switching in the absence of CD4(+) T cells.  相似文献   

16.
IFN-gamma-deficient (IFN-gamma(-/-)) mice inoculated with intermediate doses of a slowly replicating strain of lymphocytic choriomeningitis virus become chronically infected. In such mice a hypercompensated CTL response is observed that partially controls virus replication. Here we have investigated whether CD4(+) Th cells are required to establish and maintain this new equilibrium. The absence of IFN-gamma does not impair the generation of IL-2-producing CD4(+) cells, and depletion of these cells precipitates severe CD8(+) T cell-mediated immunopathology in IFN-gamma(-/-) mice, indicating an important role of CD4(+) T cells in preventing this syndrome. Analysis of organ virus levels revealed a further impairment of virus control in IFN-gamma(-/-) mice following CD4(+) cell depletion. Initially the antiviral CTL response did not require CD4(+) cells, but with time an impaired reactivity toward especially the glycoprotein 33--41 epitope was noted. Enumeration of epitope-specific (glycoprotein 33--41 and nucleoprotein 396--404) CD8(+) T cells by use of tetramers gave similar results. Finally, limiting dilution analysis of CTL precursors reveal an impaired capacity to sustain this population in CD4(+)-depleted mice, especially in mice also deficient in IFN-gamma. Thus, our findings disclose that T cell help is required to sustain the expanded CTL precursor pool required in IFN-gamma(-/-) mice. This interpretation is supported by mathematical modeling that predicts an increased requirement for help in IFN-gamma(-/-) hosts similar to what is found with fast replicating virus strains in normal hosts. Thus, the functional integrity of CD8(+) effector T cells is one important factor influencing the requirement for T cell help during viral infection.  相似文献   

17.
18.
Replication of the neurotropic mouse hepatitis virus strain JHM (JHMV) is controlled primarily by CD8(+) T-cell effectors utilizing gamma interferon (IFN-gamma) and perforin-mediated cytotoxicity. CD4(+) T cells provide an auxiliary function(s) for CD8(+) T-cell survival; however, their direct contribution to control of virus replication and pathology is unclear. To examine a direct role of CD4(+) T cells in viral clearance and pathology, pathogenesis was compared in mice deficient in both perforin and IFN-gamma that were selectively reconstituted for these functions via transfer of virus-specific memory CD4(+) T cells. CD4(+) T cells from immunized wild-type, perforin-deficient, and IFN-gamma-deficient donors all initially reduced virus replication. However, prolonged viral control by IFN-gamma-competent donors suggested that IFN-gamma is important for sustained virus control. Local release of IFN-gamma was evident by up-regulation of class II molecules on microglia in recipients of IFN-gamma producing CD4(+) T cells. CD4(+) T-cell-mediated antiviral activity correlated with diminished clinical symptoms, pathology, and demyelination. Both wild-type donor CD90.1 and recipient CD90.2 CD4(+) T cells trafficked into the central nervous system (CNS) parenchyma and localized to infected white matter, correlating with decreased numbers of virus-infected oligodendrocytes in the CNS. These data support a direct, if limited, antiviral role for CD4(+) T cells early during acute JHMV encephalomyelitis. Although the antiviral effector mechanism is initially independent of IFN-gamma secretion, sustained control of CNS virus replication by CD4(+) T cells requires IFN-gamma.  相似文献   

19.
The mechanism of cooperation between the L3T4+ and Lyt-2+ T cell subsets in effective clearance of Sendai virus from infected mouse lungs was studied by adoptive cell transfer using nude mice. Simultaneous transfer of a long-term-cultured Sendai virus-specific L3T4+ T cell line with L3T4+ cell-depleted immune spleen cell (L3T4-) fraction to infected nude mice could result in viral clearance, although single injection with either of these cells was not effective. Instead of the L3T4+ T cells, culture supernatants of the L3T4- T cell line or concanavalin A-stimulated mouse spleen cells and mouse serum immunized with the virus were also active in the cooperative viral clearance with L3T4- fraction. The role of the Sendai virus-sensitized L3T4- cell fraction in cooperative viral clearance with humoral factors could be replaced by neither T cell-deprived immune spleen cell fraction nor normal spleen cells. The 1,500 units of recombinant mouse interleukin 2 (IL-2), which was more than 12 times the IL-2 activity present in the supernatants of the T cell line or concanavalin A-stimulated spleen cells, failed to clear the virus in combination with the L3T4- fraction. Monoclonal antibodies to Sendai or mouse hepatitis viruses were also effective in the cooperative antiviral activity. IL-2 activity was not detected in these monoclonal antibodies and the mouse immune serum. Single injection of any humoral factors failed to clear the virus. These results indicate that Sendai virus-sensitized Lyt-2+ subset of T cells acts cooperatively with humoral factor(s) other than IL-2 or Sendai virus-specific antibody present in supernatants of the T cell line, of concanavalin A-stimulated spleen cells or hybridomas, and in mouse serum immunized with the virus.  相似文献   

20.
Sendai virus is eliminated from the respiratory tract of gamma interferon (IFN-gamma) -/- BALB/c mice with normal kinetics. The level of virus-specific cytotoxic T-lymphocyte (CTL) activity in the cell population recovered by bronchoalveolar lavage is unimpaired, the prevalence of interleukin-4 (IL-4)-producing cells is increased, and the titers of virus-specific immunoglobulins IgG1 and IgG2b are higher in the IFN-gamma -/- mice. The emergence of this T-helper 2 response profile in both lymphoid tissue and the pneumonic lung has no obvious deleterious consequences. Virus clearance is slightly delayed following depletion of the CD4+ subset, with the effect being similar in magnitude for IFN-gamma -/- and +/+ mice. However, the generation of CTL precursors (CTLp) is diminished in the IFN-gamma -/- (but not +/+) mice in the absence of concurrent CD4+ T help. Apparently the clonal expansion of the CTLp population can be promoted either by a cytokine (perhaps IL-2) produced by the IFN-gamma -/- CD4+ T cells or by IFN-gamma made by other cell types in the +/+ mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号