首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-affinity interaction between the envelope glycoprotein (gp120-gp41) of the human immunodeficiency virus type 1 and its receptor, CD4, is important for viral entry into cells and therapeutical approaches based on the soluble form of CD4 (sCD4). Using flow cytometry, we studied the kinetics of binding of sCD4 to gp120-gp41 expressed on the cell surface. sCD4 binding was dependent on sCD4 concentration and temperature and exhibited bimolecular reaction kinetics. Binding was very slow at low sCD4 concentrations (below 0.2 micrograms/ml) and low temperatures (below 13 degrees C) but increased sharply with increasing temperature. The rate constant for association at 37 degrees C (1.5 x 10(5) M-1 s-1) was 14-fold higher than at 4 degrees C, but the affinity of sCD4 to membrane-bound gp120-gp41 was not significantly affected. The activation energy at higher temperatures (28 to 37 degrees C) was less than at lower temperatures (4 to 13 degrees C). After long periods of incubation, we observed a decrease of surface-bound sCD4 and gp120, even at low temperatures, which was attributed to sCD4-induced shedding of gp120. The rate of gp120 shedding was much lower than the rate of sCD4 binding and was dependent on sCD4 concentration and temperature. The finding that sCD4 binding is slow, especially at low sCD4 concentrations, can be of critical importance for efficient blocking of viral infection by sCD4 and should be considered when designing new protocols in the therapy of AIDS patients.  相似文献   

2.
We report here that human immunodeficiency virus type 2 (HIV-2) envelope glycoprotein (gp105), but not HIV-1 gp120, can bind to CD8 molecules as well as to CD4 molecules on human T cells. This phenomenon may lead to differences in the life cycles of HIV-1 and HIV-2, and it may be related to the differences in disease manifestations of HIV-1 and HIV-2 infection, including longer survival of HIV-2-infected patients.  相似文献   

3.
Tardif MR  Tremblay MJ 《Journal of virology》2005,79(21):13714-13724
Memory CD4+ T cells are considered a stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) and a barrier to eradication of this retroviral infection in patients under therapy. It has been shown that memory CD4+ T cells are preferentially infected with HIV-1, but the exact mechanism(s) responsible for this higher susceptibility remains obscure. Previous findings indicate that incorporation of host-derived intercellular adhesion molecule 1 (ICAM-1) in HIV-1 increases virus infectivity. To measure the putative involvement of virus-anchored ICAM-1 in the preferential infection of memory cells by HIV-1, quiescent and activated naive and memory T-cell subsets were exposed to isogenic virions either lacking or bearing ICAM-1. Memory CD4+ T cells were found to be more susceptible than naive CD4+ T cells to infection with ICAM-1-bearing virions, as exemplified by a more important virus replication, an increase in integrated viral DNA copies, and a more efficient entry process. Interactions between virus-associated host ICAM-1 and cell surface LFA-1 under a cluster formation seem to be responsible for the preferential HIV-1 infection of the memory cell subset. Altogether, these data shed light on a potential mechanism by which HIV-1 preferentially targets long-lived memory CD4+ T cells.  相似文献   

4.
5.
The immune correlates of protection in human immunodeficiency virus type 1 (HIV-1) infection remain poorly defined, particularly the contribution of CD4(+) T cells. Here we explore the effector functions of HIV-1-specific CD4(+) T cells. We demonstrate HIV-1 p24-specific CD4(+)-T-cell cytolytic activity in peripheral blood mononuclear cells directly ex vivo and after enrichment by antigen-specific stimulation. We further show that in a rare long-term nonprogressor, both an HIV-1-specific CD4(+)-T-cell clone and CD4(+) T cells directly ex vivo exert potent suppression of HIV-1 replication. Suppression of viral replication was dependent on cell-cell contact between the effector CD4(+) T cells and the target cells. While the antiviral effector activity of CD8(+) T cells has been well documented, these results strongly suggest that HIV-1-specific CD4(+) T cells are capable of directly contributing to antiviral immunity.  相似文献   

6.
The ability of human immunodeficiency virus strain MN (HIV(MN)), a T-cell line-adapted strain of HIV, and X4 and R5 primary isolates to bind to various cell types was investigated. In general, HIV(MN) bound to cells at higher levels than did the primary isolates. Virus bound to both CD4-positive (CD4(+)) and CD4-negative (CD4(-)) cells, including neutrophils, Raji cells, tonsil mononuclear cells, erythrocytes, platelets, and peripheral blood mononuclear cells (PBMC), although virus bound at significantly higher levels to PBMC. However, there was no difference in the amount of HIV that bound to CD4-enriched or CD4-depleted PBMC. Virus bound to CD4(-) cells was up to 17 times more infectious for T cells in cocultures than was the same amount of cell-free virus. Virus bound to nucleated cells was significantly more infectious than virus bound to erythrocytes or platelets. The enhanced infection of T cells by virus bound to CD4(-) cells was not due to stimulatory signals provided by CD4(-) cells or infection of CD4(-) cells. However, anti-CD18 antibody substantially reduced the enhanced virus replication in T cells, suggesting that virus that bound to the surface of CD4(-) cells is efficiently passed to CD4(+) T cells during cell-cell adhesion. These studies show that HIV binds at relatively high levels to CD4(-) cells and, once bound, is highly infectious for T cells. This suggests that virus binding to the surface of CD4(-) cells is an important route for infection of T cells in vivo.  相似文献   

7.
8.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein has been shown to be extensively modified by N-linked glycosylation; however, the presence of O-linked carbohydrates on the glycoprotein has not been firmly established. We have found that enzymatic deglycosylation of the HIV-1 envelope glycoprotein with neuraminidase and O-glycosidase results in a decrease in the apparent molecular weight of the envelope glycoprotein. This result was observed in both vaccinia virus recombinant-derived envelope glycoproteins and glycoproteins derived from the IIIB, SG3, and HXB2, strains of HIV-1. The decrease in molecular weight was also observed when the envelope glycoprotein had been deglycosylated with N-glycanase F after treatment with neuraminidase and O-glycosidase, indicating that the decrease in apparent molecular weight was not attributable to the removal of N-linked carbohydrate. Treatment with neuraminidase, O-glycosidase, and N-glycanase F was found to be necessary to remove all radiolabel from [3H]glucosamine-labelled envelope glycoprotein, a result seen for both recombinant and HIV-1-derived envelope glycoprotein. [3H]glucosamine-labelled carbohydrates liberated by O-glycosidase treatment were separated by paper chromatography and were found to be of a size consistent with O-linked oligosaccharides. We, therefore, conclude that the HIV-1 envelope glycoprotein is modified by the addition of O-linked carbohydrates.  相似文献   

9.
10.
11.
It is generally recognized that macrophage-tropic human immunodeficiency virus type 1 (HIV-1) is the predominant population during the acute and asymptomatic phases of HIV-1 infection. Here, we compared the proliferation and syncytium-inducing activities of different HIV-1 strains in primary CD4+ T cells expressing various helper T (Th)-type cytokine profiles. The macrophage-tropic HIV-1 strains HIV-1JR-CSF, HIV-1NFN-SX, and HIV-1SF162 could proliferate vigorously and generate syncytia in primary CD4+ T cells irrespective of their Th subtype, in contrast to the T-cell-line-tropic HIV-1 strains HIV-1NL4-3 and HIV-1IIIB, which favored non-type 1 Th conditions. These results indicate that macrophage-tropic HIV-1 may be more invasive and virulent, since it kills more CD4+ Th1 cells than T-cell-line-tropic HIV-1 during the early stages of HIV-1 infection, when the Th1 immune response is dominant.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) infects human CD4+ cells by a high-affinity interaction between its envelope glycoprotein gp120 and the CD4 molecule on the cell surface. Subsequent virus entry into the cells involves other steps, one of which could be cleavage of the gp120 followed by virus-cell fusion. The envelope gp120 is highly variable among different HIV-1 isolates, but conserved amino acid sequence motifs that contain potential proteolytic cleavage sites can be found. Following incubation with a soluble form of CD4, we demonstrate that gp120 of highly purified HIV-1 preparations is, without addition of exogenous proteinase, cleaved most likely in the V3 loop, yielding two proteins of 50 and 70 kDa. The extent of gp120 proteolysis is HIV-1 strain dependent and correlates with the recombinant soluble CD4 sensitivity to neutralization of the particular strain. The origin of the proteolytic activity in the virus preparations remains unclear. The results support the hypothesis that cleavage of gp120 is required for HIV infection of cells.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4+ T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.  相似文献   

14.
Distinct sequences of human immunodeficiency virus type 1 (HIV-1) have been found between different tissue compartments or subcompartments within a given tissue. Whether such compartmentalization of HIV-1 occurs between different cell populations is still unknown. Here we address this issue by comparing HIV-1 sequences in the second constant region through the fifth hypervariable region (C2 to V5) of the surface envelope glycoprotein (Env) between viruses in purified blood CD14(+) monocytes and CD4(+) T cells obtained longitudinally from five infected patients over a time period ranging from 117 to 3,409 days postseroconversion. Viral populations in both cell types at early infection time points appeared relatively homogeneous. However, later in infections, all five patients showed heterogeneous populations in both CD14(+) monocytes and CD4(+) T cells. Three of the five patients had CD14(+) monocyte populations with significantly more genetic diversity than the CD4(+) T-cell population, while the other two patients had more genetic diversity in CD4(+) T cells. The cellular compartmentalization of HIV-1 between CD14(+) monocytes and CD4(+) T cells was not seen early during infections but was evident at the later time points for all five patients, indicating an association of viral compartmentalization with the time course of HIV-1 infection. The majority of HIV-1 V3 sequences indicated a macrophage-tropic phenotype, while a V3 sequence-predicted T-cell tropic virus was found in the CD4(+) T cells and CD14(+) monocytes of two patients. These findings suggest that HIV-1 in CD14(+) monocytes could disseminate and evolve independently from that in CD4(+) T cells over the course of HIV-1 infection, which may have implications on the development of new therapeutic strategies.  相似文献   

15.
B Crise  L Buonocore    J K Rose 《Journal of virology》1990,64(11):5585-5593
We analyzed coexpression of the human immunodeficiency virus type 1 glycoprotein precursor, gp160, and its cellular receptor CD4 in HeLa cells to determine whether the two molecules can interact prior to transport to the cell surface. Results of studies employing coprecipitation, analysis of oligosaccharide processing, and immunocytochemistry showed that newly synthesized CD4 and gp160 form a complex prior to transport from the endoplasmic reticulum (ER). CD4 expressed by itself was transported efficiently from the ER to the cell surface, but the complex of CD4 and gp160 was retained in the ER. This retention of CD4 within the ER is probably a consequence of the very inefficient transport of gp160 itself (R. L. Willey, J. S. Bonifacino, B. J. Potts, M. A. Martin, and R. D. Klausner, Proc. Natl. Acad. Sci. USA 85:9580-9584, 1988). Retention of CD4 in the ER by gp160 may partially explain the down regulation of CD4 in human immunodeficiency virus type 1-infected T cells. Inhibition of CD4 transport appears to be a consequence of the interaction of two membrane-bound molecules, because a complex of CD4 and gp120 (the soluble extracellular domain of gp160) was transported rapidly and efficiently from the ER.  相似文献   

16.
17.
For many years the heterogeneity of CD4+ T-helper (Th) cells has been limited to Th1 and Th2 cells, which have been considered not only to be responsible for different types of protective responses, but also for the pathogenesis of many disorders. Th1 cells are indeed protective against intracellular microbes and they are thought to play a pathogenic role in organ-specific autoimmune and other chronic inflammatory disorders. Th2 cells provide protection against helminths, but are also responsible for the pathogenesis of allergic diseases. The identification and cloning of new cytokines has allowed one to enlarge the series of functional subsets of CD4+ Th effector cells. In particular, CD4+ Th cells producing IL-17 and IL-22, named Th17, have been initially implicated in the pathogenesis of many chronic inflammatory disorders instead of Th1 cells. However, the more recent studies in both humans and mice suggest that Th17 cells exhibit a high plasticity toward Th1 cells and that both Th17 and Th1 cells may be pathogenic. More recently, another two subsets of effector CD4+ Th cells, named Th9 and Th22 cells, have been described, even if their pathophysiological meaning is still unclear. Despite the heterogeneity of CD4+ effector Th cells being higher than previously thought and some of their subsets exhibiting high plasticity, the Th1/Th2 paradigm still maintains a strong validity.  相似文献   

18.
P A Ashorn  E A Berger    B Moss 《Journal of virology》1990,64(5):2149-2156
Human immunodeficiency virus (HIV) infects human cells by binding to surface CD4 molecules and directly fusing with the cell membrane. Although mouse cells expressing human CD4 bind HIV, they do not become infected, apparently because of a block in membrane fusion. To study this problem, we constructed a recombinant vaccinia virus that can infect and promote transient expression of full-length CD4 in mammalian cells. This virus, together with another vaccinia recombinant encoding biologically active HIV envelope glycoprotein gp160, allowed us to study CD4/gp160-mediated cell-cell fusion in a wide variety of human and nonhuman cells in the absence of other HIV proteins. By using syncytium formation assays in which a single cell type expressed both CD4 and gp160, we demonstrated membrane fusion in lymphoid and nonlymphoid human cells but not in any of the 23 tested nonhuman cell types, derived from African green monkey, baboon, rabbit, hamster, rat, or mouse. However, in mixing experiments with one cell type expressing CD4 and the other cell type expressing gp160, all of these nonhuman cells could form CD4/gp160-mediated syncytia when mixed with human cells; in 20 of 23 cases, membrane fusion occurred only if the CD4 molecule was expressed on the human cells whereas in the other three cases, CD4 could be expressed on either one of the fusing partners. Interestingly, in one mouse cell line, CD4-dependent syncytia formed without a human partner, but only if a C-terminally truncated form of the HIV envelope glycoprotein was employed. Our results indicate that nonhuman cells are intrinsically capable of undergoing CD4/gp160-mediated membrane fusion, but this fusion is usually prevented by the lack of helper or the presence of inhibitory factors in the nonhuman cell membranes.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) can readily accept envelope (Env) glycoproteins from distantly related retroviruses. However, we previously showed that the HIV-1 Env glycoprotein complex is excluded even from particles formed by the Gag proteins of another lentivirus, visna virus, unless the matrix domain of the visna virus Gag polyprotein is replaced by that of HIV-1. We also showed that the integrity of the HIV-1 matrix domain is critical for the incorporation of wild-type HIV-1 Env protein but not for the incorporation of a truncated form which lacks the 144 C-terminal amino acids of the cytoplasmic domain of the transmembrane glycoprotein. We report here that the C-terminal truncation of the transmembrane glycoprotein also allows the efficient incorporation of HIV-1 Env proteins into viral particles formed by the Gag proteins of the widely divergent Moloney murine leukemia virus (Mo-MLV). Additionally, pseudotyping of a Mo-MLV-based vector with the truncated rather than the full-length HIV-1 Env allowed efficient transduction of human CD4+ cells. These results establish that Mo-MLV-based vectors can be used to target cells susceptible to infection by HIV-1.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1)-infected T cells form a virological synapse with noninfected CD4+ T cells in order to efficiently transfer HIV-1 virions from cell to cell. The virological synapse is a specialized cellular junction that is similar in some respects to the immunological synapse involved in T-cell activation and effector functions mediated by the T-cell antigen receptor. The immunological synapse stops T-cell migration to allow a sustained interaction between T-cells and antigen-presenting cells. Here, we have asked whether HIV-1 envelope gp120 presented on a surface to mimic an HIV-1-infected cell also delivers a stop signal and if this is sufficient to induce a virological synapse. We demonstrate that HIV-1 gp120-presenting surfaces arrested the migration of primary activated CD4 T cells that occurs spontaneously in the presence of ICAM-1 and induced the formation of a virological synapse, which was characterized by segregated supramolecular structures with a central cluster of envelope surrounded by a ring of ICAM-1. The virological synapse was formed transiently, with the initiation of migration within 30 min. Thus, HIV-1 gp120-presenting surfaces induce a transient stop signal and supramolecular segregation in noninfected CD4+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号