首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we have described a distance constraint in the unknown tertiary structure of the human dopamine transporter (hDAT) by identification of two histidines, His(193) in the second extracellular loop and His(375) at the top of transmembrane (TM) 7, that form two coordinates in an endogenous, high affinity Zn(2+)-binding site. To achieve further insight into the tertiary organization of hDAT, we set out to identify additional residues involved in Zn(2+) binding and subsequently to engineer artificial Zn(2+)-binding sites. Ten aspartic acids and glutamic acids, predicted to be on the extracellular side, were mutated to asparagine and glutamine, respectively. Mutation of Glu(396) (E396Q) at the top of TM 8 increased the IC(50) value for Zn(2+) inhibition of [(3)H]dopamine uptake from 1.1 to 530 microM and eliminated Zn(2+)-induced potentiation of [(3)H]WIN 35,428 binding. These data suggest that Glu(396) is involved in Zn(2+) binding to hDAT. Importantly, Zn(2+) sensitivity was preserved following substitution of Glu(396) with histidine, indicating that the effect of mutating Glu(396) is not an indirect effect because of the removal of a negatively charged residue. The common participation of Glu(396), His(193), and His(375) in binding the small Zn(2+) ion implies their proximity in the unknown tertiary structure of hDAT. The close association between TM 7 and 8 was further established by engineering of a Zn(2+)-binding site between His(375) and a cysteine inserted in position 400 in TM 8. Summarized, our data define an important set of proximity relationships in hDAT that should prove an important template for further exploring the molecular architecture of Na(+)/Cl(-)-dependent neurotransmitter transporters.  相似文献   

2.
The molecular basis for substrate translocation in the Na+/Cl--dependent neurotransmitter transporters remains elusive. Here we report novel insight into the translocation mechanism by delineation of an endogenous Zn2+-binding site in the human dopamine transporter (hDAT). In micromolar concentrations, Zn2+ was found to act as a potent, non-competitive blocker of dopamine uptake in COS cells expressing hDAT. In contrast, binding of the cocaine analogue, WIN 35,428, was markedly potentiated by Zn2+. Surprisingly, these effects were not observed in the closely related human norepinephrine transporter (hNET). A single non-conserved histidine residue (His193) in the large second extracellular loop (ECL2) of hDAT was discovered to be responsible for this difference. Thus, Zn2+ modulation could be conveyed to hNET by mutational transfer of only this residue. His375 conserved between hDAT and hNET, present in the fourth extracellular loop (ECL4) at the top of transmembrane segment VII, was identified as a second major coordinate for Zn2+ binding. These data provide evidence for spatial proximity between His193 and His375 in hDAT, representing the first experimentally demonstrated proximity relationship in an Na+/Cl--dependent transporter. Since Zn2+ did not prevent dopamine binding, but inhibited dopamine translocation, our data suggest that by constraining movements of ECL2 and ECL4, Zn2+ can restrict a conformational change critical for the transport process.  相似文献   

3.
Gether U  Norregaard L  Loland CJ 《Life sciences》2001,68(19-20):2187-2198
The dopamine transporter is member of a large family of Na+/Cl- dependent neurotransmitter and amino acid transporters. Little is known about the molecular basis for substrate translocation in this class of transporters as well as their tertiary structure remains elusive. In this report, we provide the first crude insight into the structural organization of the human dopamine transporter (hDAT) based on the identification of an endogenous high affinity Zn2+ binding site followed by engineering of an artificial Zn2+ binding site. By binding to the endogenous site, Zn2+ acts as a potent non-competitive inhibitor of dopamine uptake mediated by the hDAT transiently expressed in COS-7 cells. Systematic mutagenesis of potential Zn2+ coordinating residues lead to the identification of three residues on the predicted extracellular face of the transporter, 193His in the second extracellular loop, 375His at the external end of the putative transmembrane segment (TM) 7, and 396Glu at the external end of TM 8, forming three coordinates in the endogenous Zn2+ binding site. The three residues are separate in the primary structure but their common participation in binding the small Zn(II) ion define their spatial proximity in the tertiary structure of the transporter. Finally, an artificial inhibitory Zn2+ binding site was engineered between TM 7 and TM 8. This binding site both verify the proximity between the two domains as wells as it supports an alpha-helical configuration at the top of TM 8 in the hDAT.  相似文献   

4.
The human dopamine transporter (hDAT) contains an endogenous high affinity Zn2+ binding site with three coordinating residues on its extracellular face (His193, His375, and Glu396). Upon binding to this site, Zn2+ causes inhibition of [3H]1-methyl-4-phenylpyridinium ([3H]MPP+) uptake. We investigated the effect of Zn2+ on outward transport by superfusing hDAT-expressing HEK-293 cells preloaded with [3H]MPP+. Although Zn2+ inhibited uptake, Zn2+ facilitated [3H]MPP+ release induced by amphetamine, MPP+, or K+-induced depolarization specifically at hDAT but not at the human serotonin and the norepinephrine transporter (hNET). Mutation of the Zn2+ coordinating residue His(193) to Lys (the corresponding residue in hNET) eliminated the effect of Zn2+ on efflux. Conversely, the reciprocal mutation (K189H) conferred Zn2+ sensitivity to hNET. The intracellular [3H]MPP+ concentration was varied to generate saturation isotherms; these showed that Zn2+ increased V(max) for efflux (rather than K(M-Efflux-intracellular)). Thus, blockage of inward transport by Zn2+ is not due to a simple inhibition of the transporter turnover rate. The observations provide evidence against the model of facilitated exchange-diffusion and support the concept that inward and outward transport represent discrete operational modes of the transporter. In addition, they indicate a physiological role of Zn2+, because Zn2+ also facilitated transport reversal of DAT in rat striatal slices.  相似文献   

5.
Two high affinity Zn(2+) binding sites were engineered in the otherwise Zn(2+)-insensitive rat gamma-aminobutyric acid (GABA) transporter-1 (rGAT-1) based on structural information derived from Zn(2+) binding sites engineered previously in the homologous dopamine transporter. Introduction of a histidine (T349H) at the extracellular end of transmembrane segment (TM) 7 together with a histidine (E370H) or a cysteine (Q374C) at the extracellular end of TM 8 resulted in potent inhibition of [3H]GABA uptake by Zn(2+) (IC(50) = 35 and 44 microM, respectively). Upon expression in Xenopus laevis oocytes it was similarly observed that Zn(2+) was a potent inhibitor of the GABA-induced current (IC(50) = 21 microM for T349H/E370H and 51 microM for T349H/Q374C), albeit maximum inhibition was only approximately 40% in T349H/E370H versus approximately 90% in T349H/Q374C. In the wild type, Zn(2+) did not affect the Na(+)-dependent transient currents elicited by voltage jumps and thought to reflect capacitive charge movements associated with Na(+) binding. However, in both mutants Zn(2+) caused a reduction of the inward transient currents upon jumping to hyperpolarized potentials as reflected in rightward-shifted Q/V relationships. This suggests that Zn(2+) is inhibiting transporter function by stabilizing the outward-facing Na(+)-bound state. Translocation of lithium by the transporter does not require GABA binding and analysis of this uncoupled Li(+) conductance revealed a potent inhibition by Zn(2+) in T349H/E370H, whereas surprisingly the T349H/Q374C leak was unaffected. This differential effect supports that the leak conductance represents a unique operational mode of the transporter involving conformational changes different from those of the substrate translocation process. Altogether our results support both an evolutionary conserved structural organization of the TM 7/8 domain and a key role of this domain in GABA-dependent and -independent conformational changes of the transporter.  相似文献   

6.
Publication of the rhodopsin X-ray structure has facilitated the development of homology models of other G protein-coupled receptors. However, possible shifts of transmembrane (TM) alpha helices, expected variations in helical distortions, and differences in loop size necessitate experimental verification of these comparative models. To refine a rhodopsin-based homology model of the mu-opioid receptor (MOR), we experimentally determined structural-distance constraints from intrinsic and engineered metal-binding sites in the rat MOR. Investigating the relatively high intrinsic affinity of MOR for Zn(2+) (IC(50) approximately 30microM), we observed that mutation of His(319) (TM7) abolished Zn(2+) inhibition of ligand binding, while mutation of Asp(216) (extracellular loop 2) decreased the effect of Zn(2+), suggesting these residues participate in the intrinsic Zn(2+)-binding center of MOR. To verify the relative orientation of TM5 and TM6 and to examine whether a rhodopsin-like alpha aneurism is present in TM5, we engineered Zn(2+)-binding centers by mutating residues of TM5 and TM6 to Cys or His, making use of the native His(297) in TM6 as an additional Zn(2+)-coordination site. Inhibition of opioid ligand binding by Zn(2+) suggests that residues Ile(234) and Phe(237) in TM5 face the binding-site crevice and form a metal-binding center with His(297) and Val(300) in TM6. This observation is inconsistent with a rhodopsin-like structure, which would locate Ile(234) on the lipid-exposed side of TM5, too distant from other residues making up the Zn(2+)-binding site. Subsequent distance geometry refinement of the MOR model indicates that the rhodopsin-like alpha aneurism is likely absent in TM2 but present in TM5.  相似文献   

7.
The activity of G protein-coupled receptors (GPCRs) can be modulated by a diverse spectrum of drugs ranging from full agonists to partial agonists, antagonists, and inverse agonists. The vast majority of these ligands compete with native ligands for binding to orthosteric binding sites. Allosteric ligands have also been described for a number of GPCRs. However, little is known about the mechanism by which these ligands modulate the affinity of receptors for orthosteric ligands. We have previously reported that Zn(II) acts as a positive allosteric modulator of the beta(2)-adrenergic receptor (beta(2)AR). To identify the Zn(2+) binding site responsible for the enhancement of agonist affinity in the beta(2)AR, we mutated histidines located in hydrophilic sequences bridging the seven transmembrane domains. Mutation of His-269 abolished the effect of Zn(2+) on agonist affinity. Mutations of other histidines had no effect on agonist affinity. Further mutagenesis of residues adjacent to His-269 demonstrated that Cys-265 and Glu-225 are also required to achieve the full allosteric effect of Zn(2+) on agonist binding. Our results suggest that bridging of the cytoplasmic extensions of TM5 and TM6 by Zn(2+) facilitates agonist binding. These results are in agreement with recent biophysical studies demonstrating that agonist binding leads to movement of TM6 relative to TM5.  相似文献   

8.
Monocyte chemotactic protein-1 (MCP-1) binds its G-protein-coupled seven transmembrane (TM) receptor, CCR2B, and causes infiltration of monocytes/macrophages into areas of injury, infection or inflammation. To identify functionally important amino acid residues in CCR2B, we made specific mutations of nine residues selected on the basis of conservation in chemokine receptors and located TM1 (Tyr(49)), TM2 (Leu(95)), TM3 (Thr(117) and Tyr(120)), and TM7 (Ala(286), Thr(290), Glu(291), and His(297)) and in the extracellular loop 3 (Glu(278)). MCP-1 binding was drastically affected only by mutations in TM7. Reversing the charge at Glu(291) (E291K) and at His(297) (H297D) prevented MCP binding although substitution with Ala at either site had little effect, suggesting that Glu(291) and His(297) probably stabilize TM7 by their ionic interaction. E291A elicited normal Ca(2+) influx. H297A, Y49F in TM1 and L95A in TM2 that showed normal MCP-1 binding did not elicit Ca(2+) influx and elicited no adenylate cyclase inhibition at any MCP-1 concentration. MCP-1 treatment of HEK293 cells caused lamellipodia formation only when they expressed CCR2B. The mutants that showed no Ca(2+) influx and adenylate cyclase inhibition by MCP-1 treatment showed lamellipodia formation and chemotaxis. Our results show that induction of lamellipodia formation, but not Ca(2+) influx and adenylate cyclase inhibition, is necessary for chemotaxis.  相似文献   

9.
Fourier transform infrared (FTIR) difference spectroscopy allows the study of molecular changes occurring at active sites in proteins with high sensitivity. Reactions are triggered by light, potential, or temperature steps and more recently by the diffusion of buffers containing effectors above membrane proteins deposited as films on ATR crystals. We have adapted a microdialysis system to an ATR, to study metal sites in soluble proteins. In this study, we identified a Cd(2+)- or Zn(2+)-binding site in cytochrome c with dissociation constants of 17 and 42 microM, respectively, which affects the oxidation rate of ferrocytochrome c by hydrogen peroxide. Using the microdialysis ATR-FTIR setup, we determined that a histidine and the carboxylate group of a glutamate are involved in Zn(2+) binding. The implication of His 33 and Glu 104 in the binding site was deduced from the comparison of FTIR data recorded with horse heart and the variant tuna cytochrome c lacking these two amino acids. A two-dimensional NMR analysis of the Zn(2+)-binding site in horse heart cytochrome c confirmed that His 33 and residues close to the C terminus are sensitive to Zn(2+) binding. This study demonstrates that the microdialysis ATR-FTIR setup is promising for the analysis of metal sites in proteins. From H(2)O/(2)H(2)O exchange experiments, we concluded that the impact of Zn(2+) and Cd(2+) binding on the oxidation kinetics of ferrocytochrome c by H(2)O(2) is associated to the perturbation of a hydrogen-bonding network involving His 33 that is sensitive to the redox state of cytochrome c.  相似文献   

10.
Inhibition by polyvalent cations is a defining characteristic of voltage-gated proton channels. The mechanism of this inhibition was studied in rat alveolar epithelial cells using tight-seal voltage clamp techniques. Metal concentrations were corrected for measured binding to buffers. Externally applied ZnCl(2) reduced the H(+) current, shifted the voltage-activation curve toward positive potentials, and slowed the turn-on of H(+) current upon depolarization more than could be accounted for by a simple voltage shift, with minimal effects on the closing rate. The effects of Zn(2+) were inconsistent with classical voltage-dependent block in which Zn(2+) binds within the membrane voltage field. Instead, Zn(2+) binds to superficial sites on the channel and modulates gating. The effects of extracellular Zn(2+) were strongly pH(o) dependent but were insensitive to pH(i), suggesting that protons and Zn(2+) compete for external sites on H(+) channels. The apparent potency of Zn(2+) in slowing activation was approximately 10x greater at pH(o) 7 than at pH(o) 6, and approximately 100x greater at pH(o) 6 than at pH(o) 5. The pH(o) dependence suggests that Zn(2+), not ZnOH(+), is the active species. Evidently, the Zn(2+) receptor is formed by multiple groups, protonation of any of which inhibits Zn(2+) binding. The external receptor bound H(+) and Zn(2+) with pK(a) 6.2-6.6 and pK(M) 6.5, as described by several models. Zn(2+) effects on the proton chord conductance-voltage (g(H)-V) relationship indicated higher affinities, pK(a) 7 and pK(M) 8. CdCl(2) had similar effects as ZnCl(2) and competed with H(+), but had lower affinity. Zn(2+) applied internally via the pipette solution or to inside-out patches had comparatively small effects, but at high concentrations reduced H(+) currents and slowed channel closing. Thus, external and internal zinc-binding sites are different. The external Zn(2+) receptor may be the same modulatory protonation site(s) at which pH(o) regulates H(+) channel gating.  相似文献   

11.
The recently determined crystal structure of the human β2-adrenergic (β2AR) G-protein-coupled receptor provides an excellent structural basis for exploring β2AR-ligand binding and dissociation process. Based on this crystal structure, we simulated ligand exit from the β2AR receptor by applying the random acceleration molecular dynamics (RAMD) simulation method. The simulation results showed that the extracellular opening on the receptor surface was the most frequently observed egress point (referred to as pathway A), and a few other pathways through interhelical clefts were also observed with significantly lower frequencies. In the egress trajectories along pathway A, the D192-K305 salt bridge between the extracellular loop 2 (ECL2) and the apex of the transmembrane helix 7 (TM7) was exclusively broken. The spatial occupancy maps of the ligand computed from the 100 RAMD simulation trajectories indicated that the receptor-ligand interactions that restrained the ligand in the binding pocket were the major resistance encountered by the ligand during exit and no second barrier was notable. We next performed RAMD simulations by using a putative ligand-free conformation of the receptor as input structure. This conformation was obtained in a standard molecular dynamics simulation in the absence of the ligand and it differed from the ligand-bound conformation in a hydrophobic patch bridging ECL2 and TM7 due to the rotation of F193 of ECL2. Results from the RAMD simulations with this putative ligand-free conformation suggest that the cleft formed by the hydrophobic bridge, TM2, TM3, and TM7 on the extracellular surface likely serves as a more specific ligand-entry site and the ECL2-TM7 hydrophobic junction can be partially interrupted upon the entry of ligand that pushes F193 to rotate, resulting in a conformation as observed in the ligand-bound crystal structure. These results may help in the design of β2AR-targeting drugs with improved efficacy, as well as in understanding the receptor subtype selectivity of ligand binding in the β family of the adrenergic receptors that share almost identical ligand-binding pockets, but show notable amino acid sequence divergence in the putative ligand-entry site, including ECL2 and the extracellular end of TM7.  相似文献   

12.
Metal ion binding to human hemopexin   总被引:1,自引:0,他引:1  
Binding of divalent metal ions to human hemopexin (Hx) purified by a new protocol has been characterized by metal ion affinity chromatography and potentiometric titration in the presence and absence of bound protoheme IX. ApoHx was retained by variously charged metal affinity chelate resins in the following order: Ni(2+) > Cu(2+) > Co(2+) > Zn(2+) > Mn(2+). The Hx-heme complex exhibited similar behavior except the order of retention of the complex on Zn(2+)- and Co(2+)-charged columns was reversed. One-dimensional (1)H NMR of apoHx in the presence of Ni(2+) implicates at least two His residues and possibly an Asp, Glu, or Met residue in Ni(2+) binding. Potentiometric titrations establish that apoHx possesses more than two metal ion binding sites and that the capacity and/or affinity for metal ion binding is diminished when heme binds. For most metal ions that have been studied, potentiometric data did not fit to binding isotherms that assume one or two independent binding sites. For Mn(2+), however, these data were consistent with a high-affinity site [K(A) = (15 +/- 3) x 10(6) M(-)(1)] and a low-affinity site (K(A) 相似文献   

13.
There is evidence to suggest that dopamine (DA) oxidizes to form dopamine ortho-quinone (DAQ), which binds covalently to nucleophilic sulfhydryl groups on protein cysteinyl residues. This reaction has been shown to inhibit dopamine uptake, as well as other biological processes. We have identified specific cysteine residues in the human dopamine transporter (hDAT) that are modified by this electron-deficient substrate analog. DAQ reactivity was inferred from its effects on the binding of [(3)H]2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (beta-CFT) to hDAT cysteine mutant constructs. One construct, X5C, had four cysteines mutated to alanine and one to phenylalanine (Cys(90)A, Cys(135)A, C306A, C319F and Cys(342)A). In membrane preparations 1 mM DAQ did not affect [(3)H]beta-CFT binding to X5C hDAT, in contrast to its effect in wild-type hDAT in which it reduced the B:(max) value by more than half. Wild-type cysteines were substituted back into X5C, one at a time, and the ability of DAQ to inhibit [(3)H]beta-CFT binding was assessed. Reactivity of DAQ with Cys(90) increased the affinity of [(3)H]beta-CFT for the transporter, whereas reactivity with Cys(135) decreased the affinity of [(3)H]beta-CFT. DAQ did not change the K:(D) for [(3)H]beta-CFT binding to wild-type. The reactivity of DAQ at Cys(342) decreased B:(max) to the same degree as wild-type. The latter result suggests that Cys(342) is the wild-type residue most responsible for DAQ-induced inhibition of [(3)H]beta-CFT binding.  相似文献   

14.
Previously we obtained evidence based on engineering of Zn2+ binding sites that the extracellular parts of transmembrane segment 7 (TM7) and TM8 in the human dopamine transporter are important for transporter function. To further evaluate the role of this domain, we have employed the substituted cysteine accessibility method and performed 10 single cysteine substitutions at the extracellular ends of TM7 and TM8. The mutants were made in background mutants of the human dopamine transporter with either two (E2C) or five endogenous cysteines substituted (X5C) that render the transporter largely insensitive to cysteine modification. In two mutants (M371C and A399C), treatment with the sulfhydryl-reactive reagent [2-(trimethylammonium)-ethyl]methanethiosulfonate (MTSET) led to a substantial inhibition of [3H]dopamine uptake. In M371C this inactivation was enhanced by Na+ and blocked by dopamine. Inhibitors such as cocaine did not alter the effect of MTSET in M371C. The protection of M371C inactivation by dopamine required Na+. Because dopamine binding is believed to be Na+-independent, this suggests that dopamine induces a transport-associated conformational change that decreases the reactivity of M371C with MTSET. In contrast to M371C, cocaine decreased the reaction rate of A399C with MTSET, whereas dopamine had no effect. The protection by cocaine can either reflect that Ala-399 lines the cocaine binding crevice or that cocaine induces a conformational change that decreases the reactivity of A399C. The present findings add new functionality to the TM7/8 region by providing evidence for the occurrence of distinct Na+-, substrate-, and perhaps inhibitor-induced conformational changes critical for the proper function of the transporter.  相似文献   

15.
In membrane preparations, CFT, a phenyltropane cocaine analog, and dopamine (DA) interact with the recombinant human dopamine transporter (hDAT) in Na+ -free medium. Na+ markedly increased the transporter's affinity for CFT, but had little or no effect on DA potency for inhibiting CFT binding. Raising [Na+ ] from 20 to 155 mm reduced Li+ -induced increase in DA K (i), but not CFT K (d). The presence of 155 mm Na+ enhanced the tolerance to low pH of CFT Kd but not DA Ki. Leucine substitution for tryptophan 84 (W84L) in transmembrane domain (TM) 1 or asparagine substitution for aspartate 313 (D313N) in TM 6 did not or only modestly enhance the affinity of Na+ -independent CFT binding, and retained the near normal ability of DA, Li+, K+, or H+ to inhibit this binding. However, the mutations significantly enhanced the Na+ stimulation of CFT binding as well as the Na+ antagonism against Li+ and H+ inhibition of CFT binding. In contrast, the mutations neither changed the Na+ -insensitive feature of DA Ki nor enhanced the Na+ protection of DA Ki against Li+ 's inhibitory effect, though they caused Na+ protection of DA Ki against H+ 's inhibitory action. These results are consistent with the existence of binding conformations for DA that are distinguishable from those for CFT, and with a differential association of cation interactions with DA and CFT binding. The mutations likely alter Na+ -bound state(s) of hDAT, preferentially strengthening the positive allosteric coupling between Na+ and CFT binding, and reducing the impact of Li+ or H+ on the CFT binding.  相似文献   

16.
The human dopamine (DA) transporter (hDAT) contains multiple tryptophans and acidic residues that are completely or highly conserved among Na(+)/Cl(-)-dependent transporters. We have explored the roles of these residues using non-conservative substitution. Four of 17 mutants (E117Q, W132L, W177L and W184L) lacked plasma membrane immunostaining and were not functional. Both DA uptake and cocaine analog (i.e. 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane, CFT) binding were abolished in W63L and severely damaged in W311L. Four of five aspartate mutations (D68N, D313N, D345N and D436N) shifted the relative selectivity of the hDAT for cocaine analogs and DA by 10-24-fold. In particular, mutation of D345 in the third intracellular loop still allowed considerable [(3)H]DA uptake, but caused undetectable [(3)H]CFT binding. Upon anti-C-terminal-hDAT immunoblotting, D345N appeared as broad bands of 66-97 kDa, but this band could not be photoaffinity labeled with cocaine analog [(125)I]-3beta-(p-chlorophenyl)tropane-2beta-carboxylic acid ([(125)I]RTI-82). Unexpectedly, in this mutant, cocaine-like drugs remained potent inhibitors of [(3)H]DA uptake. CFT solely raised the K(m) of [(3)H]DA uptake in wild-type hDAT, but increased K(m) and decreased V(max) in D345N, suggesting different mechanisms of inhibition. The data taken together indicate that mutation of conserved tryptophans or acidic residues in the hDAT greatly impacts ligand recognition and substrate transport. Additionally, binding of cocaine to the transporter may not be the only way by which cocaine analogs inhibit DA uptake.  相似文献   

17.
The two highly conserved Zn(2+) finger motifs of the HIV-1 nucleocapsid protein, NCp7, strongly bind Zn(2+) through coordination of one His and three Cys residues. To further analyze the role of these residues, we investigated the Zn(2+) binding and acid-base properties of four single-point mutants of a short peptide corresponding to the distal finger motif of NCp7. In each mutant, one Zn(2+)-coordinating residue is substituted with a noncoordinating one. Using the spectroscopic properties of Co(2+), we first establish that the four mutants retain their ability to bind a metal cation through a four- or five-coordinate geometry with the vacant ligand position(s) presumably occupied by water molecule(s). Moreover, the pK(a) values of the three Cys residues of the mutant apopeptide where His44 is substituted with Ala are found by (1)H NMR to be similar to those of the native peptide, suggesting that the mutations do not affect the acid-base properties of the Zn(2+)-coordinating residues. The binding of Zn(2+) was monitored by using the fluorescence of Trp37 as an intrinsic probe. At pH 7.5, the apparent Zn(2+) binding constants (between 1.6 x 10(8) and 1.3 x 10(10) M(-)(1)) of the four mutants are strongly reduced compared to those of the native peptide but are similar to those of various host Zn(2+) binding proteins. As a consequence, the loss of viral infectivity following the mutation of one Zn(2+)-coordinating residue in vivo may not be related to the total loss of Zn(2+) binding. The pH dependence of Zn(2+) binding indicates that the coordinating residues bind Zn(2+) stepwise and that the free energy provided by the binding of a given residue may be modulated by the entropic contribution of the residues already bound to Zn(2+). Finally, the pK(a) of Cys49 in the holopeptide is found to be 5.0, a value that is at least 0.7 unit higher than those for the other Zn(2+)-coordinating residues. This implies that Cys49 may act as a switch for Zn(2+) dissociation in the distal finger motif of NCp7, a feature that may contribute to the high susceptibility of Cys49 to electrophilic attack.  相似文献   

18.
19.
Three conserved serine residues (Ser193, Ser194, and Ser197) in transmembrane spanning region (TM) V of the D2 dopamine receptor have been mutated to alanine, individually and in combination, to explore their role in ligand binding and G protein coupling. The multiple Ser -->Ala mutations had no effect on the binding of most antagonists tested, including [3H]spiperone, suggesting that the multiple mutations did not affect the overall conformation of the receptor protein. Double or triple mutants containing an Ala197 mutation showed a decrease in affinity for domperidone, whereas Ala193 mutants showed an increased affinity for a substituted benzamide, remoxipride. However, dopamine showed large decreases in affinity (>20-fold) for each multiple mutant receptor containing the Ser193Ala mutation, and the high-affinity (coupled) state of the receptor (in the absence of GTP) could not be detected for any of the multiple mutants. A series of monohydroxylated phenylethylamines and aminotetralins was tested for their binding to the native and multiple mutant D2 dopamine receptors. The results obtained suggest that Ser193 interacts with the hydroxyl of S-5-hydroxy-2-dipropylaminotetralin (OH-DPAT) and Ser197 with the hydroxyl of R-5-OH-DPAT. We predict that Ser193 interacts with the hydroxyl of R-7-OH-DPAT and the 3-hydroxyl (m-hydroxyl) of dopamine. Therefore, the conserved serine residues in TMV of the D2 dopamine receptor are involved in hydrogen bonding interactions with selected antagonists and most agonists tested and also enable agonists to stabilise receptor-G protein coupling.  相似文献   

20.
Bombarda E  Roques BP  Mély Y  Grell E 《Biochemistry》2005,44(19):7315-7325
The kinetics of Zn(2+) binding by two point-mutated forms of the HIV-1 NCp7 C-terminal zinc finger, each containing tridentate binding motif HCC [Ser49(35-50)NCp7] or CCC [Ala44(35-50)NCp7], has been studied by stopped-flow spectrofluorimetry. Both the formation and dissociation rate constants of the complexes between Zn(2+) and the two model peptides depend on pH. The results are interpreted on the basis of a multistep reaction model involving three Zn(2+) binding paths due to three deprotonated states of the coordinating motif, acting as monodentate, bidentate, and tridentate ligands. For Ser49(35-50)NCp7 around neutral pH, binding preferentially occurs via the deprotonated Cys36 in the bidentate state also involving His44. The binding rate constants for the monodentate and bidentate states are 1 x 10(6) and 3.9 x 10(7) M(-)(1) s(-)(1), respectively. For Ala44(35-50)NCp7, intermolecular Zn(2+) binding predominantly occurs via the deprotonated Cys36 in the monodentate state with a rate constant of 3.6 x 10(7) M(-)(1) s(-)(1). In both mutants, the final state of the Zn(2+) complex is reached by subsequent stepwise ligand deprotonation and intramolecular substitution of coordinated water molecules. The rate constants for the intermolecular binding paths of the bidentate and tridentate states of Ala44(35-50)NCp7 and of the tridentate state of Ser49(35-50)NCp7 are much smaller than expected according to electrostatic considerations. This is attributed to conformational constraints required to achieve proper metal coordination during folding. The dissociation of Zn(2+) from both peptides is again characterized by a multistep process and takes place fastest via the protonated Zn(2+)-bound bidentate and monodentate states, with rate constants of approximately 0.3 and approximately 10(3) s(-)(1), respectively, for Ser49(35-50)NCp7 and approximately 4 x 10(-)(3) and approximately 500 s(-)(1), respectively, for Ala44(35-50)NCp7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号