首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Human cytolytic T lymphocytes (CTL) clones and HLA-A2- and HLA-B7-transfected human, monkey, and mouse cell lines were used to investigate the basis for species-restricted antigen recognition. Most allospecific CTL clones obtained after stimulation with the human JY cell line (source of HLA-A2 and HLA-B7 genomic clones) recognized HLA antigens expressed in human and monkey cell lines but did not recognize HLA expressed in murine cells. By initially stimulating the responder cells with HLA-transfected mouse cells, two CTL clones were obtained that recognized HLA expressed in murine cells. Functional inhibition of these CTL clones with anti-class I monoclonal antibodies (MAb) indicated that clones reactive with HLA+ murine cells were of higher avidity than clones that did not recognize HLA+ murine target cells. MAb inhibition of accessory molecule interactions demonstrated that the LFA-1 and T8 surface molecules were involved in CTL-target cell interactions in all three species. In contrast, the LFA-2/CD2 molecule, previously shown to participate in a distinct activation pathway, was involved in the cytolysis of transfected human and monkey target cells, but not in the lysis of HLA+ murine cells. Thus transfection of HLA genes into different recipient species cell lines provides us with the ability to additionally delineate the functional requirements for allospecific CTL recognition and lysis.  相似文献   

2.
Eleven cytotoxic T lymphocyte (CTL) clones were derived from C57BL/6 spleen cells immunized with HLA-B7 expressing human lymphoblastoid cell lines. Reactivity against HLA-B7 was initially established because the clones lysed 2 target cells that shared only HLA-B7 with the immunizing cell line and they did not lyse five other cell lines that were HLA-B7 negative but expressed other class I or class II antigens found on the immunizing cell. Six of the clones were subsequently shown to lyse all tested HLA-B7-positive B and T lymphoid cell lines, peripheral blood lymphocytes, and a murine L cell that expressed HLA-B7 as a consequence of DNA-mediated gene transfer. On the basis of the inability of the clones to lyse a panel of HLA-B7-negative cell lines, up to 18 other class I antigens could be eliminated as being cross-reactively recognized. However, two of the clones recognized a single HLA-B7-negative cell line. It is suggested that in these cases the clones were cross-reactively recognizing the HLA-B27 or HLA-B40 antigens that were present on these target cells. The remaining five CTL clones failed to lyse one out of seven tested HLA-B7-positive lymphoid lines (either RPMI-1788 or DR1B) and failed to lyse peripheral blood lymphocytes from one out of three tested HLA-B7-positive individuals. These five clones also did not recognize the HLA-B7-positive murine L cell. However, based on analysis with a large target cell panel, the reactivity pattern of these five clones could only be correlated with recognition of HLA-B7. This conclusion is further supported by antibody-blocking studies to be reported elsewhere. As before, lysis of single HLA-B7-negative target cells by two of the clones could be ascribed to recognition of HLA-B27 or HLA-B40. The results show that murine clones raised against HLA-B7 exhibit a high degree of specificity for determinants that are unique or largely confined to the HLA-B7 alloantigen. In addition, these clones define different antigenic determinants on the molecule. Thus, such clones appear to be excellent candidates for use as human tissue typing reagent. The results further show that there is a strong correlation between recognition of particular HLA-B7-positive human cell lines and recognition of the HLA-B7 expressing murine L cell. Possible reasons for such a correlation and their relationship to the general phenomenon of CTL recognition are discussed.  相似文献   

3.
Genes coding for the heavy chain of the class I antigens HLA-A2 or HLA-B7 of the human major histocompatibility complex have been introduced into mouse LtK- cells by cotransfection with the herpes simplex virus thymidine kinase gene. HAT-resistant colonies were isolated expressing either HLA-A2 or HLA-B7 as monitored by indirect immunofluorescence. Immunoprecipitation analysis of both antigens by either sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or isoelectric focusing (IEF) showed that they were identical to the HLA-A2 and HLA-B7 expressed in the human lymphoblastoid cell line JY (homozygous HLA-A2, HLA-B7). However, human cytotoxic T lymphocytes (CTL) generated against JY and CTL clones specific for HLA-A2 or HLA-B7 were unable to recognize the transfectants as targets. These results indicate that the human HLA-A2 (or B7) complexed with the murine beta 2-microglobulin could be an inappropriate target structure for the CTL. However, because the transfectants are not killed by human CTL even in the presence of lectins, it is suggested that other molecules that are not able to overcome the human-mouse species barrier may be involved in the killing mechanism.  相似文献   

4.
We have introduced the gene encoding the heavy chain of the human MHC class I Ag HLA-B7 into transgenic mice. The gene was shown to be expressed at both the RNA and protein level. Cell surface HLA-B7 was detected on whole spleen cells by immunoprecipitation and on purified T cells by flow cytometry (FACS). Normal mice immunized with H-2-syngeneic B7-transgenic spleen cells generated CTL capable of killing transgenic cells and B7-expressing human JY cells. Anti-HLA mAb blocked the killing of JY cells. These results indicate that the human class I Ag HLA-B7 can be expressed at the surface of transgenic spleen cells in the absence of human beta 2-microglobulin, and that a significant fraction exists in a form recognizable by nontransgenic CTL as a major histocompatibility Ag unrestricted by H-2.  相似文献   

5.
We investigated T-cell-defined HLA-B7 subtypes using cDNA sequencing, analysis of bound peptides, and reactivity with a panel of alloreactive cytotoxic T-lymphocyte (CTL) clones. Three subtypes (HLA-B*0702, HLA-B*0703, and HLA-B*0705) differ in nucleotide and predicted amino acid sequence. CTL reactivity and pooled peptide sequencing show that these three HLA-B7 subtypes bind distinct but overlapping sets of peptides. In particular B*0702 expresses D pocket residue Asp 114 and binds peptides with P3 Arg, whereas B*0705 expresses D pocket residue Asn 114 and binds peptides with P3 Ala, Leu, and Met. Consistent with different peptide-binding specificities, three alloreactive CTL differentiate between cells expressing B*0702, B*0703, and B*0705 by detecting specific peptide/HLA-B7 complexes. In contrast, three other T-cell-defined HLA-B7 subtypes are identical to HLA-B*0702. The B*0702-expressing cell lines are differentiated by two of ten CTL clones. One CTL clone differentiates B*0702-expressing cells by their ability to present peptide antigen. Thus differences in peptide presentation can explain differential CTL recognition of cell lines expressing structurally identical and variant HLA-B7.  相似文献   

6.
Three HLA-B27 allospecific cytolytic T lymphocyte (CTL) clones were isolated by limiting dilution of HLA-B27-negative responder cells stimulated with HLA-B27.1-positive lymphoblastoid cells. These clones displayed three distinct reaction patterns when tested for their lytic ability against target cells expressing various structurally defined HLA-B27 subtypes. One of the clones was specific for HLA-B27.1; a second CTL clone reacted only with B27.1 and, less efficiently, with B27.2; the third clone recognized both B27.1 and B27f targets but not cells expressing any other B27 subtype. These results indicate that HLA-B27f is a functional variant amenable to differential recognition by alloreactive CTL. A correlation of the structure of the HLA-B27 subtypes with the reactivity of these clones revealed that multiple B27-specific alloreactive CTL are activated against epitopes of the HLA-B27.1 molecule sharing common structural features. This illustrates the complexity and fine specificity of the allogeneic CTL response against class I HLA antigens and suggests that their immunodominant regions are those which are capable of eliciting a diverse polyclonal response against each of these regions, rather than inducing the selective expansion of a single T cell clone.  相似文献   

7.
TCR-gamma delta+ CTL clones were generated from CD4-CD8- T cells that were stimulated twice with the cell line JY. Either IL-2 or IL-4 was used as growth factor. A number of TCR-gamma delta+ clones were found to lyse the stimulator cell line JY. Two of these clones secreted N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester serine esterase activity after stimulation with JY cells. The cytotoxic activity of these two clones was blocked by a mAb specific for HLA-A2. Moreover, these two TCR-gamma delta+ clones selectively lysed human fibroblast line M1 and murine P815 cells transfected with DNA fragments encoding HLA-A2 but not those transfected with HLA-B7 encoding DNA, indicating that these clones recognize HLA-A2. Analysis of the recognition of HLA-A2 by using target cells transfected with mutated HLA-A2 encoding genes revealed that the nature of the amino acid at position 152 of the molecule is critical for recognition of the TCR-alpha beta+ as well as the TCR-gamma delta+ CTL clones since replacement of Val for Ala at that position resulted in abrogation of recognition of one TCR-gamma delta+ and one TCR-alpha beta+ clone and substitution of Val for Glu affected recognition of all clones. Substitution of Leu for Trp at position 156 abrogated recognition by one TCR-gamma delta+ and one TCR-alpha beta+ T cell clone, but recognition by the other clones was not changed. All clones were able to secrete IL-2, IFN-gamma, and GM-CSF but not IL-4 after activation.  相似文献   

8.
T cells of two donors, JR (HLA-A23, 29; B7,7; G; DRw5) and HG (HLA-A2, 23; B40, w44; Cw4), were stimulated with cells from an HLA homozygous lymphoblastoid cell line JY (HLA-A2, 2; B7,7, C-, DRw4, 6) and cloned by limiting dilution after the third stimulation. Two cytotoxic T-cell (CTL) clones, JR-2-16 (from donor JR) and HG-31 (from donor HG), were used for detailed studies. The results of a panel study using lymphocytes from HLA-typed individuals and a study with two HLA recombinant families indicate that the antigens recognized by the CTL clones JR-2-16 and HG-31 were highly associated with HLA-A2 and HLA-B7, respectively. Blocking studies with a monoclonal antibody recognizing a framework determinant on HLA-A, -B and-C antigens and a monoclonal antibody reacting with HLA-A2 support the notion that JR-2-16 and HG-31 interact with the HLA-A2 and the HLA-B7 antigens per se. However, these clones did not recognize the HLA-A2 and HLA-B7 of all donors typed for these antigens, suggesting that the HLA-A2 and HLA-B7 antigens of these particular donors are variants of the serologically defined HLA antigens. These results indicate that in vitro-derived human CTL clones detect variations in the serologically defined allospecificities and can be used as reagents to elucidate the polymorphism of HLA antigens further.Abbreviations used in this paper: CTL cytotoxic - T lymphocytes - BSA bovine serum albumin - PHA phytohemagglutinin - Con A concanavalin A.  相似文献   

9.
The role of the avidity of human CTL in the recognition and lysis of murine P815 cells expressing HLA-B27.1 Ag has been examined. Seven B27-specific alloreactive CTL clones were tested for their ability to lyse a B27.1+-P815 transfectant clone 1-7E, obtained after cotransfection of P815-HTR cells with HLA-B27.1 and human beta 2-microglobulin genes. The expression level of HLA-B27.1 on 1-7E cells was comparable to that on a human lymphoblastoid cell line, as determined by flow cytometry. Of the seven CTL clones used, CTL 1, 26, and 29 displayed the same fine specificity as established with a panel of target cells expressing six structurally different HLA-B27 variants. However, CTL 1 and 29 were of higher avidity than CTL 26, in that the lysis of human target cells by only this latter clone was inhibited by an anti-CD8 mAb. Based on the same criteria, CTL 2, 15, and 48 possessed the same or very similar fine specificity, but CTL 48 was of higher avidity than CTL 2 or 15. The seventh clone, CTL 40, was of a different fine specificity and its lysis of human target cells was also inhibited by the same anti-CD8 mAb. Only those clones whose lysis of human targets could not be inhibited by anti-CD8 antibody were able to lyse the 1-7E murine transfectants. These results indicate that, for human CTL clones with identical or very similar fine specificity, only those of higher avidity are able to lyse P815 murine cells expressing the HLA-B27 antigen. The lysis of HLA-B27.1+-murine transfectants by relevant clones was inhibited by anti-CD8 antibody. This result strongly suggests that the relative contribution of CD8 in stabilizing the interaction between human CTL and HLA-B27+-murine target cells is more significant than with human target cells.  相似文献   

10.
L cells expressing human HLA-A2 or HLA-B7 class I antigen heavy chains are not recognized by human cytotoxic T lymphocytes directed at HLA-A2 or HLA-B7 antigens. To test whether the absence of human beta 2-m was the cause of the lack of recognition by the human cytotoxic T lymphocytes, coexpression of the human beta 2-m gene and the HLA-A2 or HLA-B7 heavy chain in L cells ("double transfectants") was obtained. In addition, L cells expressing HLA-A2 or HLA-B7 antigens in association with human beta 2-m were obtained by an exchange reaction, in which human beta 2-m from serum replaced the endogenous murine beta 2-m. Both types of transfectant cells were used in 51Cr-release assays and cold target inhibition assays for human cytotoxic T cell clones which were directed at HLA-A2 or HLA-B7. Neither human CTL clones nor a mixture of CTL specific for HLA-A2 and HLA-B7 were able to recognize these cells. Several alternative explanations for these observations are discussed.  相似文献   

11.
It has been demonstrated previously that lymphocytes of donor CF (HLA-A29,w33; B7,14) are not recognized by the HLA-B7-specific CTL clone HG-31. This report presents a structural comparison of the HLA-B7 antigen of donor CF with a "normal" HLA-B7 antigen, derived from the cell line JY. Isoelectric focusing showed that CF HLA-B7 heavy chains were more acidic than JY HLA-B7 heavy chains by the equivalent of a single charge. High pressure liquid chromatography and ion exchange chromatography comparisons of double-labeled tryptic peptides revealed a single detectable difference, which corresponded to the tryptic peptide spanning residues 112 to 121 on the HLA-B7 heavy chain. Although the complete amino acid sequence of this peptide was not obtained, the partial sequence indicates a substitution of an unidentified amino acid for tyrosine at position 116 of the heavy chain. This residue is found to vary among HLA specificities and to be altered in many H-2Kb mutants.  相似文献   

12.
The cytolytic responses of either normal (non transgenic), HLA-B7 (single transgenic) or HLA-B7 x human beta 2 microglobulin (double transgenic) DBA/2 mice induced by transfected HLA-Cw3 P815 (H-2d) mouse mastocytoma cells were compared, to evaluate whether the expression of an HLA class I molecule in responder mice would favor the emergence of HLA-specific, H-2-unrestricted CTL. Only 8 of 300 HLA-Cw3-specific CTL clones tested could selectively lyse HLA-Cw3-transfected cells in an H-2-unrestricted manner, all having been isolated after hyperimmunization of double transgenic mice. These clones also lysed HLA-Cw3+ human cells. Unexpectedly, the lysis of the human but not that of the murine HLA-Cw3 cells was inhibited by Ly-2,3-specific mAb. Despite significant expression of HLA-B7 class I molecules on transgenic lymphoid cells, including thymic cells, limiting dilution analysis and comparative study of TCR-alpha and -beta gene rearrangements of the eight isolated clones (which suggested that they all derived from the same CTL precursor) indicated that the frequency of HLA-Cw3-specific H-2 unrestricted cytotoxic T lymphocytes remained low (even in HLA-B7 x human beta 2-microglobulin double transgenic mice). This suggests that coexpression of HLA class I H and L chain in transgenic mice is not the only requirement for significant positive selection of HLA class I-restricted cytotoxic mouse T lymphocytes.  相似文献   

13.
HLA-B27 subtype polymorphism is amenable to differential recognition by CTL. Site-directed mutagenesis was used to construct a series of HLA-B27 mutants reproducing most of the changes occurring in the natural subtypes. The reactivity of 21 anti-HLA-B27 CTL clones was examined with these mutants to address three issues concerning the alloreactive response against HLA-B27: 1) diversity of clonotypic specificities, 2) structural features of the epitopes recognized by these clones, and 3) role of individual positions in the differential recognition of HLA-B27 subtypes. Virtually all CTL clones displayed unique reaction patterns with the mutants, indicating a corresponding diversity of epitopes. However, these share some molecular features, such as certain amino acid residues and related locations. Individual mutations induced complex effects on multiple B27-specific CTL epitopes, revealing some of their very precise stereochemical constrains. An important feature of HLA-B27 subtype polymorphism is that every individual change was relevant, altering recognition by many CTL clones. Although the specific set affected by each mutation was partially different, the global number of clones affected by most changes was very similar. This suggests that the antigenic profile of any given subtype is not dominated by one particular change but is uniquely defined by its corresponding set of changes. An exception was the change at position 152, which totally abrogated recognition by all 20 anti-B*2705 CTL clones. This effect decisively influences the profound differences in T cell recognition between B*2705 and the two subtypes, B*2704 and B*2706, carrying this change. The results are compatible with the idea that HLA-B27 allorecognition may involve multiple peptides bound to the alloantigen on the cell surface.  相似文献   

14.
We have evaluated the serological relationships between the murine H-2Dd and human HLA molecules using four H-2Dd-reactive monoclonal antibodies (mAbs) produced in the A.BY (KbIbDb) anti-A.TL (KsIkDd) combination. In the mouse, these reagents exhibited three distinct reactivity patterns: Dd, Ks, and H-2u (mAb 81.L); Dd, H-2p, and H-2u (mAb 81.R); and Dd, Kd, H-2p, H-2u, and H-2v (mAbs 97.G and 97.H). Sequential immunoprecipitation and cross-competitive mAb binding experiments revealed that these mAbs recognized determinants in two spatially distinct polymorphic domains on the H-2Dd molecule of B10.A(5R) cells (defined by mAbs 81.L and 81.R, 97.H, and 97.G, respectively). MAbs 81.R, 97.G, and 97.H, but not 81.L, also defined an HLA-linked polymorphism in the human, the main characteristics of which can be summarized as follows: (i) on B lymphoblastoid cell lines, mAbs 81.R and 97.H bound to cells expressing the HLA-B7, HL-B27 or Bw40 cross-reacting specificities, (ii) on peripheral blood lymphocyte (PBL) panel mAb 81.R exerted C dependent cytotoxicity to 118 of 400 cells tested, including almost all HLA-B7 or HLA-B27 cells or both (r: 0.952), (iii) the expression of the 81.R cross-reacting determinant segregated in an informative family with the parental haplotype carrying the HLA-B7 allele, and (iv) mAbs 81.R, 97.G, and 97.H recognized topologically related determinants on the same class I molecule(s) of the human B lymphoblastoid cells JY (HLA-A2,2, -B7,7). These data support the view that some, but not all H-2Dd allotopes have been conserved throughout evolution and are associated in the human with the HLA-B7, -B27 cross-reacting specificities.  相似文献   

15.
Th initial step in cytolytic T lymphocyte (CTL)-mediated cytolysis involves target cell adhesion and antigen recognition. To investigate these initial events in the CTL-target interaction, we used HLA-A2- and HLA-B7-specific human CTL clones and HLA-typed B lymphoblastoid target cells. By using two different adhesion assays, we demonstrated antigen nonspecific CTL-target cell adhesion. To more precisely define the contribution of the antigen-specific receptor to CTL-target cell adhesion, we used the HLA-A2, HLA-B7, and mock transfected RD target cells. Consistent with the results when using B lymphoblastoid target cells, the CTL clones demonstrated equivalent adhesions to the RD target cells whether or not they expressed HLA-A2 or HLA-B7. These results suggested that CTL-target cell adhesion occurred independent of the T cell receptor. By using the calcium-sensitive dye Indo-1 and flow cytometry, we assessed CTL-target cell adhesion and CTL activation. Simultaneous measurement of adhesion and intracellular free calcium demonstrated that CTL-target cell adhesion alone did not activate CTL clones. Both CTL-target cell adhesion and the presence of the appropriate HLA target molecule were necessary for the efficient activation of human CTL. MAb inhibition studies indicated that antigen nonspecific adhesion is largely regulated by the LFA-1, CD2 (LFA-2/T11), and LFA-3 cell surface molecules. These antigen nonspecific cell-cell interaction molecules appear to play an important role in facilitating antigen recognition and subsequent target cell lysis.  相似文献   

16.
Activation of peripheral blood lymphocytes (PBL) from a melanoma patient either in secondary MLC in which EBV-transformed B cells from the cell line JY were used as stimulator cells, or by co-cultivation with the autologous melanoma cells in a mixed leukocyte tumor cell culture (MLTC) resulted in the generation of cytotoxic activity against the autologous melanoma (O-mel) cells. From these activated bulk cultures four cloned cytotoxic T lymphocyte (CTL) lines were isolated. The CTL clone O-1 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+), and O-36 (T3+, T4-, T8+, OKM-, HNK-, and HLA-DR+) were obtained from MLC, whereas the CTLC clones O-C7 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+) and O-D5 (T3+, T4-, T8+, OKM-1-, HNK, and HLA-DR+) were isolated from autologous MLTC. All four CTL clones were strongly cytotoxic for O-mel cells but failed to lyse autologous fibroblasts and autologous T lymphoblasts. Moreover, the CTL clones lacked NK activity as measured against K562 and Daudi cells. Panel studies indicated that the CTL clones also killed approximately 50% of the allogeneic melanoma cells preferentially, whereas the corresponding T lymphoblasts were not lysed. Monoclonal antibodies against class I (W6/32) and class II (279) MHC antigens failed to block the reactivity of the CTL clones against O-mel and allogeneic melanoma cells, indicating that a proportion of human melanoma cells share determinants that are different from HLA antigens and that are recognized by CTL clones. In contrast to the CTL clones isolated from MLTC, the clones obtained from MLC also lysed JY cells, which initially were used as stimulator cells. The reactivity of O-36 against JY could be inhibited with W6/32, demonstrating that this reactivity was directed against class I MHC antigens. These results suggest that the lysis of O-mel and JY cells by O-36 has to be attributed to two independent specificities of this CTL clone. The specificity of the other cross-reactive CTL clone (O-1) could not be determined. The notion that individual CTL clones can have two specificities was supported by the following observations. The cytotoxic reactivity of both O-1 (T4+) and O-36 (T8+) against JY was blocked by monoclonal antibodies directed against T3 and human LFA-1, and against T3, T8, and human LFA-1, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Alloreactive CTL responses generate a great variety of clonal specificities. Such diversity may be related to recognition of multiple peptides constitutively bound to any given MHC alloantigen. Among human alloreactive CTL, only a fraction of the clones lyse mouse P815 cells expressing class I HLA proteins. In this study the fine specificity of HLA-B27 allorecognition on human or mouse cells by five human HLA-B27-specific CTL clones was comparatively analyzed. This was done to examine what degree of variation in epitope structure is compatible with recognition of HLA Ag on mouse cells. Nine site-specific HLA-B27 mutants were expressed on both human and mouse cells, after DNA-mediated gene transfer, to construct two analogous series of target cells. The reaction patterns of four of the five CTL clones with these cell panels were compatible with conservation of their corresponding epitopes upon expression of HLA-B27 on mouse cells. The reaction pattern of the fifth clone was different with either cell panel, indicating that its epitope was structurally altered on mouse cells. It also suggested a selectively increased expression of the determinant on these cells. The results suggest that most of the epitopes recognized by allospecific CTL clones reacting across species are either independent of any bound peptide or involve identical peptides from both cell types. However, some of these clones recognize alloantigen-bound peptides that are somewhat different in structure depending on the cell type, and may be expressed at the mouse cell surface in greater amounts. Such peptides could arise from related proteins in both species, and be polymorphic as a result of phylogenetic divergence.  相似文献   

18.
19.
A panel of cytolytic T lymphocyte (CTL) clones was isolated from metastases and blood samples of a melanoma patient vaccinated with MAGE-3.A1-pulsed autologous dendritic cells. We report here the identification of a new antigen encoded by the MAGE-C2 cancer-germline gene. This antigen is recognized by some of these CTL on HLA-B*4403. The sequence of the peptide is SESIKKKVL. It is processed in various melanoma cell lines expressing MAGE-C2 and HLA-B*4403. Because of the expression pattern of gene MAGE-C2, this new antigen is strictly tumor-specific and could therefore be used for peptide-based antitumoral vaccination.  相似文献   

20.
We have used bulk culture HLA-B7 and HLA-B27 specific CTL lines derived from 11 donors, and a series of rHLA-B7/HLA-B27 genes transfected into and expressed on the surface of the murine cell P815, to determine the amino acid residues on these HLA class I molecules that are critical for allospecific CTL recognition. The results obtained indicate that for four of six HLA-B7-specific CTL lines the alpha-1 domain for CTL recognition. Furthermore, we found that residues 77 and/or 80 had a critical effect on recognition for all of the CTL lines tested. The region 97-156 in the alpha-2 domain was also important for some of these CTL lines. Furthermore, by using five bulk culture HLA-B27-specific CTL lines we were able to show that residues 77 and/or 80 and residue 152 are also essential for recognition of HLA-B27 by HLA-B27-specific CTL. The strong influence exerted by these residues is discussed in terms of the three-dimensional structure of class I molecules. Finally, a selection was regularly observed in the bulk cultures such that the CTL that were preferentially influenced by either the alpha-1 or the alpha-2 domain were lost after 4 to 7 wk of culture resulting in CTL cell lines which were extremely sensitive to sequence modifications of HLA-B7 or HLA-B27. The possible reasons for this selection, which we have previously observed with both anti-HLA-A2 and anti-HLA-A3 cell lines and is therefore not unique to HLA-B7 or HLA-B27, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号