首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Nerve growth factor (NGF) was localized in the mouse submandibular gland by means of indirect immunofluorescence applied to 0.5 mthick sections of freeze-dried, plastic-embedded tissue. The antibody to NGF (IgG-fraction) was raised in rabbits immunized with pure 2.5 S NGF from submandibular glands of adult male mice.In the male gland anti-NGF bound selectively to the secretory granules was present in the cells of the granular ducts. Immunoreactive granules extended from the perinuclear region toward the apical pole. In the female gland immunoreactive cells and granules were considerably less abundant than in males. Immunofluorescence was confined to individual secretory cells located in the wall of the granular striated duct.In the present study no support was found for the hypothesis suggesting that immunoreactive NGF is formed within the secretory granules during their transport from the perinuclear region to the apical pole.  相似文献   

2.
Summary A series of polyclonal affinity-purified antibodies against mouse submandibular-gland nerve growth factor (NGF) are described. Using the submandibular gland of the male mouse and indirect immunofluorescence, the specificity and sensitivity of affinity-purified immunoglobulins and various other fractions from the immunized animals have been tested. It will be shown that affinity-purification schemes, including pre-purification of protein A-fractionated immunoglobulins to remove antibodies that bind to unrelated hydrophilic and hydrophobic proteins, significantly enhance the signal-to-noise ratio and specificity of the antibodies. The antibodies effectively detect NGF-like immunoreactivity in both fresh and fixed glandular tissue. Optimal fixation procedures are described. Fluorescence intensities are linearly correlated to log antibody concentration. By use of the best antibody fractions and optimal fixation protocols, the distribution of NGF-like immunoreactivity is described in eight different salivary glands (rat and mouse, male and female, submandibular and sublingual glands). In addition to the well-known large numbers of immunoreactive cells in the submandibular gland of the male mouse, immunoreactive cells were found in the sublingual gland of male mice and in the submandibular and sublingual glands of female mice. One antibody revealed a weak specific fluorescence also in the submandibular gland of the male mouse. In a survey of genital organs of male mice, one antibody revealed fluorescence in the germ cell line. We conclude that several polyclonal affinity-purified antibodies have been characterized that show a strong NGF-dependent binding to the secretory granules of tubular cells in the submandibular gland of male mice. These antibodies should make it possible to locate endogenous and perturbed NGF levels immunocytochemically, e.g., in the peripheral and central nervous system, where NGF concentrations may be several orders of magnitude lower than in the salivary glands.  相似文献   

3.
The enzyme Na+,K+-ATPase was localized immunohistochemically in major salivary glands of mouse, rat, and human and in exorbital lacrimal glands of the rodents. Immunoreactive Na+,K+-ATPase was abundant in the basolateral membranes of all epithelial cells lining striated and intra- and interlobular ducts of all glands. Reactivity of intercalated ducts varied among gland type and species. Cells lining granular ducts in rodent submandibular gland showed a heterogeneous staining pattern in rat but stained homogeneously in mouse. Secretory cells varied greatly in their content of immunoreactive Na+,K+-ATPase. As with all duct cells, staining was present only at the basolateral surface and was never observed at the luminal surface of reactive secretory cells. Mucous cells failed to show any reactivity in any gland examined. Serous cells showed a gradient of immunostaining intensity ranging from strongly positive in demilunes of human sublingual gland to negative in rat submandibular gland and lacrimal glands of rats and mice. The presence of basolaterally localized Na+,K+-ATPase in most serous cells but not in mucous cells suggests that the enzyme contributes to the ion and water content of copious, low-protein serous secretions. The intense immunostaining of cells in most if not all segments of the duct system supports the idea that the ducts are involved with modification of the primary saliva, and extends this concept to include all segments of the duct system.  相似文献   

4.
Basic fibroblast growth factor (bFGF) has recently been isolated from bovine adrenal glands. Immunohistological data revealed its presence in both adrenal cortex and adrenal medulla. Using immuno-electronmicroscopy, we found that in medullary chromaffin cells bFGF-immunoreactivity is localized in the secretory granules. Immunoreactivity also was observed by electronmicroscopy in isolated granules. Western blot analysis revealed the presence of the typical 18-kDa bFGF and additional immunoreactive materials with molecular masses of approximately 24, 30, and 46 kDa in whole bovine adrenal, and in cortex and medulla. Similar results were obtained with proteins from bovine chromaffin granules, with the following two exceptions: the 46-kDa immunoreactivity was found to be highly enriched when compared with medulla or cortex, and the 18-kDa band could be detected with only an antiserum against a synthetic peptide comprising the 24 NH2-terminal amino acids of bFGF, and not with an antiserum against purified bovine pituitary bFGF. All fractions enriched for bFGF-immunoreactivity showed neurotrophic activity for chick ciliary ganglion neurons, which could be blocked by antibodies. These results demonstrate for the first time the localization and occurrence of bFGF in a cellular secretory organelle, and present further evidence for the existence of higher molecular weight immunoreactive forms of bFGF.  相似文献   

5.
Summary Peroxidase activity has been localized to duct cells of the submandibular salivary gland of the hamster using a 3,3-diaminobenzidine (DAB)-H2O2 medium. In cryostat sections of glutaraldehyde-fixed tissue the enzyme activity is found in the proximal part of the duct system of the gland. In Epon sections studied in the light microscope or thin sections studied in the electron microscope the peroxidase activity is observed in cytoplasmic granules in cells of the convoluted tubules of the ducts. No activity is seen in the acini or in cells of the intralobular striated ducts. The submandibular gland of the rat was negative with respect to peroxidase reaction. The findings are discussed with special reference to the possible correlation between peroxidase activity and iodine metabolism in salivary glands.  相似文献   

6.
Summary Nerve growth factor (NGF) was localized in the submandibular, sublingual, and parotid salivary glands of male and female diabetic mice and their normal littermates by immunoperoxidase staining usingp-phenylenediamine-pyrocatechol as a chromogen for the cytochemical demonstration of peroxidase activity. In the normal male submandibular gland, immunoreactive NGF was localized in the apical regions of granular, intercalated and collecting duct cells, while in the normal female submandibular gland, NGF was present throughout the cytoplasm of granular duct cells. The localization of NGF in the diabetic male and female submandibular glands was similar and resembled that of the normal female. NGF immunoreactivity was also observed in the striated duct cells in the sublingual and parotid glands of all four types of mice.The sympathetic innervation of the submandibular glands of normal and diabetic mice was demonstrated using glyoxylic acid-induced histofluorescence. The pattern of sympathetic innervation and the intensity of catecholamine fluorescence was consistently different in the four types of mice. In the normal male submandibular gland the fluorescence was very intense, particularly in nerves adjacent to the granular ducts. In the normal female submandibular gland, the fluorescence was weak, while in the diabetic male and female the fluorescence was moderate.The correlation between the intensity of the immunocytochemical staining for NGF and the catecholamine fluorescence adjacent to the granular ducts suggests a trophic influence of the NGF-containing granular ducts on their sympathetic innervation.  相似文献   

7.
Summary Actin and myosin were localized in various salivary glands (parotid, submandibular, sublingual, lingual and Harderian gland) and the exocrine pancreas of rats by indirect immunofluorescence microscopy using specific rabbit antibodies against chicken gizzard myosin and actin. A bright immunofluorescent staining with both antibodies was observed at three main sites: (1) In myoepithelial cells of all salivary glands, (2) in secretory gland cells underneath the cell membrane bordering the acinar lumen (except Harderian and mucous lingual gland), and (3) in epithelial cells of the various secretory ducts (of all glands) in similar distribution as in acinar cells. The present immunohistochemical findings in acinar cells could lend further support to a concept suggesting that myosin and actin are involved in the process of transport and exocytosis of secretory granules.Supported by grants form Deutsche Forschungsgemeinschaft (Dr. 91/1, Ste. 105/19 and U. 34/4). We thank Mrs. Ursula König, Mrs. Christine Mahlmeister and Miss Renate Steffens for excellent technical assistance.  相似文献   

8.
Summary The distribution and origin of neuropeptide Y in the major salivary glands of the rat was studied by indirect immunofluorescence technique. Numerous nerve fibres immunoreactive for the peptide were seen in the parotid and sublingual glands. Most of the fibres were located around blood vessels and salivary acini. In the submandibular gland the number of immunoreactive nerve fibres around the acini was lower in comparison with that in the parotid and sublingual glands. Some immunoreactive nerve fibres were also found around or along intra- and interlobular ducts in all major salivary glands.A large number of the neuropeptide-containing neuronal cell bodies and nerve fibres were detected in the sympathetic superior cervical ganglion. Sympathetic postganglionic nerve trunks of this ganglion contained numerous immunoreactive nerve fibres as well. A subpopulation of the neuronal cell bodies in the submandibular ganglion were immunoreactive to neuropeptide Y.Both uni- and bilateral superior cervical ganglionectomies caused a significant decrease in the number of immunoreactive nerve fibres around the blood vessels in all the major salivary glands. However, these denervations did not affect the density of nerve fibres around the acini and ducts. On the contrary, unilateral parasympathetic denervation by sectioning the auriculotemporal nerve reduced the fibres around the secretory acini in the parotid gland remarkably, while only a minor reduction in the density of immunoreactive fibres associated with the blood vessels of the gland was detected. Unilateral electrocoagulation of the trigeminal nerve branches caused no detectable change in the density of immunoreactive nerve fibres in any of the major salivary glands.On the basis of the present findings it is concluded that neuropeptide Y-reactive nerve fibres present in all major salivary glands around the blood vessels seem to be mainly sympathetic, whereas those around the acini and ducts seems to be of parasympathetic origin.  相似文献   

9.
In this article the locations and histologic and ultrastructural features of all of the minor salivary glands of the rat are presented; similarities and differences among them are highlighted. These glands are almost as diverse morphologically as the major salivary glands of the rat. The acini of von Ebner's glands are serous; those of the anterior and posterior buccal glands and minor sublingual glands are mucous; and those of the glossopalatal, palatal, and Weber's glands are mucous with serous demilunes. The anterior buccal, minor sublingual and von Ebner's glands have striated and stratified columnar ducts, while only the minor sublingual and von Ebner's glands have intercalated ducts. The glossopalatal, palatal, posterior buccal and Weber's glands have none of these ducts; the tubulo-acini drain abruptly into short terminal ducts composed of stratified squamous epithelium. All of the mucous acini react with an antibody to a mucin (Muc19) of the rat major sublingual gland, but in some of the glands the reaction varies in intensity among the acinar cells. Ultrastructurally, the mucous secretory granules of the anterior buccal, glossopalatal, palatal and Weber's glands are biphasic, while those of the minor sublingual and posterior buccal glands are monophasic. Although there is a considerable body of literature concerning the development, innervation, physiology and proteomics of von Ebner's glands, investigation of the other minor salivary glands of the rat ranges from modest to nearly nonexistent.  相似文献   

10.
Kallikrein has been localized in rodent kidney and salivary glands by means of an immunoglobulin-enzyme bridge technique. In sections of kidney, anti-kallikrein antibodies bound to the apical region of certain distal tubule segments in the cortex, to reabsorption droplets of proximal convoluted tubules, and to certain duct segments in the papilla. In salivary glands of both male and female rats and mice, and apical rim of most striated duct cells of submandibular, parotid and sublingual glands and granular tubules of submandibular glands exhibited immunoreactivity. Granular intercalated duct cells in female submandibular glands also displayed immunostaining for kallikrein. Phenylephrine administration resulted in loss of immunoreactive granules from the granular convoluted tubule cells of male mouse submandibular gland. This response was paralleled by a biochemically demonstrable decrease in kallikrein-like tosylarginine methyl ester (TAME) esterase activity.  相似文献   

11.
Although feline salivary glands have been used in investigations on secretion and microlithiasis and both processes involve calcium, nothing is known about its distribution in these glands. Therefore we have demonstrated the presence of calcium by a histochemical technique using glyoxal bis(2-hydroxyanil) and a biochemical technique using dry ashing. The histochemical technique stained serous acinar cells weakly and rarely found mucous acinar cells strongly in the parotid gland, mucous acinar cells moderately to strongly and serous acinar cells weakly in the sublingual gland, and central and demilunar acinar cells moderately to strongly in the submandibular gland. The biochemical technique revealed less calcium in the parotid than in the submandibular and sublingual glands. Both techniques revealed a decrease of calcium in submandibular and sublingual glands following parasympathetic stimulation. The histochemical distribution of calcium, which corresponds to that of acinar secretory glycoprotein, and the loss of calcium following parasympathetic stimulation, which causes release of secretory granules, indicate the presence of calcium in secretory granules. The concentration of calcium in the different types of acinar cell corresponds to the acidity of the secretory glycoprotein and suggests that calcium is present as a cationic shield to allow the condensation of polyionic glycoprotein in secretory granules.  相似文献   

12.
Nitric oxide has been implicated in mechanisms mediating nerve-evoked vasodilatory and secretory responses in salivary glands. In the present study, the occurrence and distribution of nitric oxide synthase (NOS)-immunoreactive nerves in ferret and rat salivary glands were investigated using immunocytochemistry with rabbit and sheep NOS antisera, and using NADPH-diaphorase enzyme histochemistry. In the parotid, submandibular and sublingual glands of the rat and the ferret, NOS-immunoreactive varicose terminals encircled acini and arteries of various sizes. In the ferret, collecting ducts were also supplied with NOS-immunoreactive fibres. In the rat, only the granular ducts of the submandibular gland were supplied with such fibres. The NOS-immunoreactive innervation of acinar cells was more abundant in the rat than in the ferret, whereas the opposite was true for the innervation of blood vessels. No NOS immunoreactivity was observed in the vascular endothelium. In both species, NOS-positive ganglionic cell bodies were found in the hilar regions of the submandibular and sublingual glands, whereas none could be detected in the parotid glands. NADPH-diaphorase reactivity had the same neuronal distribution as NOS immunoreactivity and, in addition, NADPH-diaphorase reactivity was expressed in ductal epithelium. Neither sympathetic denervation (by removal of the superior cervical ganglion) nor treatment with the sensory neurotoxin capsaicin reduced the NOS-immunoreactive innervation of the parotid gland. However, parasympathetic denervation (by cutting the auriculo-temporal nerve) caused an almost total disappearance of the NOS-immunoreactive innervation. The present findings provide a morphological background to the suggested role of nitric oxide in parasympathetic secretory and vascular responses of salivary glands. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
14.
In this article the locations and histologic and ultrastructural features of all of the minor salivary glands of the rat are presented; similarities and differences among them are highlighted. These glands are almost as diverse morphologically as the major salivary glands of the rat. The acini of von Ebner's glands are serous; those of the anterior and posterior buccal glands and minor sublingual glands are mucous; and those of the glossopalatal, palatal, and Weber's glands are mucous with serous demilunes. The anterior buccal, minor sublingual and von Ebner's glands have striated and stratified columnar ducts, while only the minor sublingual and von Ebner's glands have intercalated ducts. The glossopalatal, palatal, posterior buccal and Weber's glands have none of these ducts; the tubulo-acini drain abruptly into short terminal ducts composed of stratified squamous epithelium. All of the mucous acini react with an antibody to a mucin (Muc19) of the rat major sublingual gland, but in some of the glands the reaction varies in intensity among the acinar cells. Ultrastructurally, the mucous secretory granules of the anterior buccal, glossopalatal, palatal and Weber's glands are biphasic, while those of the minor sublingual and posterior buccal glands are monophasic. Although there is a considerable body of literature concerning the development, innervation, physiology and proteomics of von Ebner's glands, investigation of the other minor salivary glands of the rat ranges from modest to nearly nonexistent.  相似文献   

15.
Sialomucin Complex (SMC; Muc4) is a heterodimeric glycoprotein consisting of two subunits, the mucin component ASGP-1 and the transmembrane subunit ASGP-2. Northern blot and immunoblot analyses demonstrated the presence of SMC/Muc4 in submaxillary, sublingual and parotid salivary glands of the rat. Immunocytochemical staining of SMC using monoclonal antisera raised against ASGP-2 and glycosylated ASGP-1 on paraffin-embedded sections of parotid, submaxillary and sublingual tissues was performed to examine the localization of the mucin in the major rat salivary glands. Histological and immunocytochemical staining of cell markers showed that the salivary glands consisted of varying numbers of serous and mucous acini which are drained by ducts. Parotid glands were composed almost entirely of serous acini, sublingual glands were mainly mucous in composition and a mixture of serous and mucous acini were present in submaxillary glands. Since immunoreactive (ir)-SMC was specifically localized to the serous cells, staining was most abundant in parotid glands, intermediate levels in submaxillary glands and least in sublingual glands. Ir-SMC in sublingual glands was localized to caps of cells around mucous acini, known as serous demilunes, which are also present in submaxillary glands. Immunocytochemical staining of SMC in human parotid glands was localized to epithelial cells of serous acini and ducts. However, the staining pattern of epithelial cells was heterogeneous, with ir-SMC present in some acinar and ductal epithelial cells but not in others. This report provides a map of normal ir-SMC/Muc4 distribution in parotid, submaxillary and sublingual glands which can be used for the study of SMC/Muc4 expression in salivary gland tumors.  相似文献   

16.
Summary Mouse salivary glands and pancreases were stained with a battery of ten horseradish peroxidase-conjugated lectins. Lectin staining revealed striking differences in the structure of oligosaccharides of stored intracellular secretory glycoproteins and glycoconjugates associated with the surface of epithelial cells lining excretory ducts. The percentage of acinar cells containing terminal -N-acetylgalactosamine residues varied greatly in submandibular glands of 30 male mice, but all submandibular acinar cells contained oligosaccharides with terminal sialic acid and penultimate -galactose residues. The last named dimer was abundant in secretory glycoprotein of all mucous acinar cells in murine sublingual glands and an additional 20–50% of these cells in all glands contained terminalN-acetylglucosamine residues. In contrast, terminal -N-acetylgalactosamine was abundant in sublingual serous demilune secretions. Serous acinar cells in the exorbital lacrimal gland, posterior lingual gland, parotid gland and pancreas exhibited a staining pattern unique to each organ. In contrast, the apical cytoplasm and surface of striated duct epithelial cells in the submandibular, sublingual, parotid and exorbital lacrimal gland stained similarly. A comparison of staining with conjugated lectins reported biochemically to have very similar carbohydrate binding specificity has revealed some remarkable differences in their reactivity, suggesting different binding specificity for the same terminal sugars having different glycosidic linkages or with different penultimate sugar residues.  相似文献   

17.
Salivary glands synthesize and secrete an unusual family of proline-rich proteins (PRPs) that can be broadly divided into acidic and basic PRPs. We studied the tissue-specific expression of these proteins in rabbits, using antibodies to rabbit acidic and basic PRPs as well as antibodies and cDNA probes to human PRPs. By immunoblotting, in vitro translation, and Northern blotting, basic PRPs could be readily detected in the parotid gland but were absent in other salivary glands. In contrast, synthesis in vitro of acidic PRPs was detected in parotid, sublingual, and submandibular glands. Ultrastructural localization with immunogold showed heavy labeling with antibodies to acidic PRPs of secretory granules of parotid acinar cells and sublingual serous demilune cells. Less intense labeling occurred in the seromucous acinar cells of the submandibular gland. With antibodies to basic PRPs, the labeling of the parotid gland was similar to that observed with antibodies to acidic PRPs, but there was only weak labeling of granules of a few sublingual demilune cells, and no labeling of the submandibular gland. These results demonstrate a variable pattern of distribution of acidic and basic PRPs in rabbit salivary glands. These animals are therefore well suited for study of differential tissue expression of PRPs.  相似文献   

18.
The research was planned to study the subcellular distribution of enzymatic secretory products within the secretory structures of the mouse major salivary glands at light and electron microscopy level by immunogold silver stain (IGSS) technique and double-sided post-embedding immunogold binding and silver amplification in order to speculate about their compartmentation. In particular, we experimented the above immunogold labeling approaches to localize the lysozyme and to verify its distribution patterns in relation to another secretion enzyme, alpha-amylase. Co-presence of lysozyme and alpha-amylase was observed in the convoluted granular tubule cells of the submandibular gland and in the demilunar cells of the sublingual gland as well as in the electron-dense regions of the mottled secretory granules in the parotid gland. Exclusive binding patterns of lysozyme were observed in the acinar cells of the submandibular and sublingual glands where alpha-amylase did not occur.  相似文献   

19.
Aquaporin-5 (AQP5) is a water channel protein and is considered to play an important role in water movement across the plasma membrane. We raised anti-AQP5 antibody and examined the localization of AQP5 protein in rat salivary and lacrimal glands by immunofluorescence microscopy. AQP5 was found in secretory acinar cells of submandibular, parotid, and sublingual glands, where it was restricted to apical membranes including intercellular secretory canaliculi. In the submandibular gland, abundant AQP5 was also found additionally at the apical membrane of intercalated duct cells. Upon stimulation by isoproterenol, apical staining for AQP5 in parotid acinar cells tended to appear as clusters of dots. These results suggest that AQP5 is one of the candidate molecules responsible for the water movement in the salivary glands.  相似文献   

20.
Epidermal growth factor (EGF) in rat salivary glands is regulated by testosterone, thyroxin, and growth hormone (GH). Salivary glands of 45-day-old giant and dwarf male and female transgenic mice were examined histologically and by immunohistochemistry (IHC) for EGF. Male giants showed no significant differences from wild-type (WT) parotid and submandibular glands. However, their sublingual glands expressed EGF diffusely and strongly in granular cells within the striated ducts, where they were not found in WT mice. Submandibular gland ducts of female WT were different, having individual granular cells strongly positive for EGF and distributed sporadically along the striated duct walls. Neither female GH-antagonist dwarf mice nor GH-receptor knockout mice had any granular cells expressing EGF in any gland. Obvious presence of granular duct cells in the sublingual glands of giant male mice suggests GH-upregulated granular cell EGF expression. Furthermore, absence of granular duct cells from all glands in female GH-antagonist and GH-receptor knockout transgenic mice suggests that GH is necessary for the differentiation of the granular cell phenotype in female salivary glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号