首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary cultures of human hepatocytes and hepatoma cell line HepG2 are frequently used to evaluate the hepatic disposition of drugs and other xenobiotics. To check the variability of the expression of drug-metabolizing enzymes in these in vitro models, expression of genes coding for several cytochrome P450 isoforms and phase II enzymes was quantified during culture time by real-time RT-PCR. Gene expression was determined daily for primary hepatocytes maintained in a sandwich culture over 1 week and for HepG2, during the first 10 passages. In primary hepatocytes characteristic expression trends were observed which could be abstracted into three major classes of time curves. Genes of the first and the second class had an expression maximum around day 6 and day 4 in culture, respectively. The third class of genes had two expression peaks: at day 1 and 5 in culture. Surprisingly, also the cell line HepG2 showed significant expression changes during passages. For example, gene expression of cytochrome 1A1 varied 8-fold, that of cytochrome 2B6 30-fold, and that of NADP-quinone reductase 1 more than 200-fold within the first 10 passages. In conclusion, neither primary hepatocytes nor HepG2 cell line display a model for constant expression of drug-metabolizing enzymes.  相似文献   

2.
Stem cell-induced hepatocytes (SC-iHeps) have been suggested as a valuable model for evaluating drug toxicology. Here, human-induced pluripotent stem cells (QIA7) and embryonic stem cells (WA01) were differentiated into hepatocytes, and the hepatotoxic effects of acetaminophen (AAP) and aflatoxin B1 (AFB1) were compared with primary hepatocytes (p-Heps) and HepG2. In a cytotoxicity assay, the IC50 of SC-iHeps was similar to that in p-Heps and HepG2 in the AAP groups but different from that in p-Heps of the AFB1 groups. In a multi-parameter assay, phenotypic changes in mitochondrial membrane potential, calcium influx and oxidative stress were similar between QIA7-iHeps and p-Heps following AAP and AFB1 treatment but relatively low in WA01-iHeps and HepG2. Most hepatic functional markers (hepatocyte-specific genes, albumin/urea secretion, and the CYP450 enzyme activity) were decreased in a dose-dependent manner following AAP and AFB1 treatment in SC-iHeps and p-Heps but not in HepG2. Regarding CYP450 inhibition, the cell viability of SC-iHeps and p-Heps was increased by ketoconazole, a CYP3A4 inhibitor. Collectively, SC-iHeps and p-Heps showed similar cytotoxicity and hepatocyte functional effects for AAP and AFB1 compared with HepG2. Therefore, SC-iHeps have phenotypic characteristics and sensitivity to cytotoxic chemicals that are more similar to p-Heps than to HepG2 cells.  相似文献   

3.
Aflatoxin B1 (AFB1) is a fungal toxin that has been associated with primary hepatocellular carcinoma (HCC) in humans. This study was undertaken to determine the cellular and molecular mechanisms by which the antioxidants beta-carotene and lycopene inhibit AFB1-induced toxic changes in human hepatocytes (HepG2 cells). An in vitro system was optimized to test the chemoprotective effects of lycopene and beta-carotene on HepG2 cells exposed to different concentrations of AFB1. Ultrastructurally, HepG2 cells cultured in the presence of AFB1 showed mitochondrial damage, nuclear condensation and a loss of cell-to-cell contact; the latter was reflected in the observation of dysfunctional gap junctions, resulting in a loss of cell-to-cell communication. At the genomic level, AFB1 formed AFB1-N7-guanine adducts, caused apoptotic cell death and suppressed p53 protein expression. In the presence of the carotenoids, survival of cells exposed to AFB1 was increased, and there was also a significant increase in cellular mitochondrial activity. Our results demonstrate that HepG2 cells pretreated with lycopene and beta-carotene are protected from the toxic effects of AFB1 at both the cellular and molecular levels.  相似文献   

4.
5.
6.
7.
Alpha-crystallins comprise 35% of soluble proteins in the ocular lens and possess chaperone-like functions. Furthermore, the alphaA subunit (alphaA-crystallin) of alpha crystallin is thought to be "lens-specific" as only very low levels of expression were detected in a few non-lenticular tissues. Here we report that human alphaA-crystallin is expressed in human livers and is regulated by farnesoid X-activated receptor (FXR) in response to FXR agonists. AlphaA-crystallin was identified in a microarray screen as one of the most highly induced genes after treatment of HepG2 cells with the synthetic FXR ligand GW4064. Northern blot and quantitative real-time PCR analyses confirmed that alphaA-crystallin expression was induced in HepG2-derived cell lines and human primary hepatocytes and hepatic stellate cells in response to either natural or synthetic FXR ligands. Transient transfection studies and electrophoretic mobility shift assays revealed a functional FXR response element located in intron 1 of the human alphaA-crystallin gene. Importantly, immunohistochemical staining of human liver sections showed increased alphaA-crystallin expression in cholangiocytes and hepatocytes. As a member of the small heat shock protein family possessing chaperone-like activity, alphaA-crystallin may be involved in protection of hepatocytes from the toxic effects of high concentrations of bile acids, as would occur in disease states such as cholestasis.  相似文献   

8.
There is a limited understanding of the cellular regulation of HBV gene expression in differentiated hepatocytes. We previously demonstrated that HBV replication inversely correlates with cell proliferation and DNA synthesis. In this report, temperature-induced modulation of cell growth was used as a novel approach to study HBV gene expression in the absence of indirect effects from drugs or serum deprivation. We observed markedly elevated levels of hepatic HBV mRNA expression from integrated and episomal HBV DNA at 32 degrees C. Additionally, hepatoblastoma cells cultured at 32 degrees C expressed increased levels of albumin mRNA and decreased levels of c-myc mRNA, which demonstrates that liver-derived cells cultured at low temperature exhibit characteristics of functional and differentiated hepatocytes. In transiently transfected HepG2 cells cultured at 32 degrees C, the HBV enhancer 1 activated the X promoter and core/pregenomic promoter by 7.3- and 28-fold, respectively. In the absence of enhancer 1, core/pregenomic promoter activity was 2.4-fold higher than the X promoter in HepG2 cells at 32 degrees C. In contrast, enhancer 1 exclusively activated the X promoter in transfected non-liver cells at 32 degrees C. Therefore, the core/pregenomic promoter exhibits strict liver-specificity at low temperature. This work supports the hypothesis that HBV replication and gene expression are optimal in non-activated hepatocytes, and provides a novel system for delineating molecular aspects of the HBV replication process.  相似文献   

9.
10.
11.
12.
13.
14.
To define the role of glycosidic conjugation of bile acids in humans, an in vitro model system is desirable. We studied the formation of glycosidic conjugates of bile acids in primary cultures of human hepatocytes, isolated from organ donor liver, and the human hepatoblastoma cell line, HepG2. Cells were incubated with 100 microM bile acids (chenodeoxycholic, CDCA; hyodeoxycholic, HDCA; and isoursodeoxycholic acids, isoUDCA) and 1-2 mM uridine diphosphoglycosides (UDP-glucose, UDP-Glc; UDP-glucuronic acid, UDP-GlcA, and UDP-N-acetylglucosamine, UDP-GlcNAc), and octyl glucoside. Media were analysed by electrospray-/gas chromatography-mass spectrometry and electrospray with collision induced dissociation. Primary cultures of human hepatocytes formed glycosidic bile acid conjugates with UDP-sugars (6alpha-Glc-HDCA, 6alpha-GlcA-HDCA, and 7beta-GlcNAc-isoUDCA) and octyl glucoside as sugar donors (3alpha-Glc-CDCA). HDCA was completely metabolised to either Glc-HDCA, a compound yet not found in vivo, or GlcA-HDCA. No glycosidic bile acid conjugate was found in media from experiments with HepG2. Thus, primary cultures of human hepatocytes, but not HepG2, are suitable in vitro systems for the study of glycosidic bile acid conjugation reactions.  相似文献   

15.
Compared with its rodent orthologs, little is known about the chemical specificity of human constitutive androstane receptor (hCAR) and its regulation of hepatic enzyme expression. Phenytoin (PHY), a widely used antiepileptic drug, is a potent inducer of CYP2B6 in primary human hepatocytes, but does not activate human pregnane X receptor (PXR) significantly in cell-based transfection assays at the same concentrations associated with potent induction of CYP2B6. Based on this observation, we hypothesized that PHY may be a selective activator of hCAR. In primary human hepatocytes, expression of CYP2B6 reporter genes containing phenobarbital-responsive enhancer module (PBREM) or PBREM/xenobiotic-responsive enhancer module (XREM) response elements were activated up to 14- and 28-fold, respectively, by 50 microm PHY. By contrast, parallel experiments in HepG2 cell lines co-transfected with an hPXR expression vector did not show increased reporter activity. These results indicated that a PXR-independent pathway, which is retained in primary hepatocytes, is responsible for PHY induction of CYP2B6. Further experiments revealed that PHY effectively translocates hCAR from the cytoplasm into the nucleus in both primary human hepatocytes and CAR(-/-) mice. Compared with vehicle controls, PHY administration significantly increased CYP2B6 reporter gene expression, when this reporter construct was delivered together with hCAR expression vector into CAR(-/-) mice. However, PHY did not increase reporter gene expression in CAR(-/-) mice in the absence of hCAR vector, implying that CAR is essential for mediating PHY induction of CYP2B6 gene expression. Taken together, these observations demonstrate that, in contrast to most of the known CYP2B6 inducers, PHY is a selective activator of CAR in humans.  相似文献   

16.
17.
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and is associated with various clinico-pathological characteristics such as genetic mutations and viral infections. Therefore, numerous laboratories look out for identifying always new putative markers for the improvement of HCC diagnosis/prognosis. Many molecular profiling studies investigated gene expression changes related to HCC. HepG2 represents a pure cell line of human liver carcinoma, often used as HCC model due to the absence of viral infection. In this study we compare gene expression profiles associated with HepG2 (as HCC model) and normal hepatocyte cells by microarray technology. Hierarchical cluster analysis of genes evidenced that 2646 genes significantly down-regulated in HepG2 cells compared to hepatocytes whereas a further 3586 genes significantly up-regulated. By using the Ingenuity Pathway Analysis (IPA) program, we have classified the genes that were differently expressed and studied the functional networks correlating these genes in the complete human interactome. Moreover, to confirm the differentially expressed genes as well as the reliability of our microarray data, we performed a quantitative Real time RT-PCR analysis on 9 up-regulated and 11 down-regulated genes, respectively. In conclusion this work i) provides a gene signature of human hepatoma cells showing genes that change their expression as a consequence of liver cancer in the absence of any genetic mutations or viral infection, ii) evidences new differently expressed genes found in our signature compared to previous published studies and iii) suggests some genes on which to focus future studies to understand if they can be used to improve the HCC prognosis/diagnosis.  相似文献   

18.
We have examined the cytotoxicity and cellular incorporation of aflatoxin B1 (AFB1) in several types of established and primary cultured cells. The inhibition of DNA synthesis by AFB1 at 1 microgram/ml was about 0-30% in the established cell lines, including human hepatic cells. In chicken primary hepatocytes, however, DNA synthesis as well as RNA and protein syntheses were strongly inhibited by much lower concentrations of AFB1, e.g., 0.1 microgram/ml. In contrast, chicken primary fibroblasts showed almost no significant response to the toxin. Microsomal cytochrome P-450 activities in hepatic tissues were 10-20-fold higher than those in fibroblastic tissues. The amount of [3H]AFB1 incorporated into acid-insoluble materials in the primary hepatocytes was also 10-100-fold more than that in the primary fibroblasts. However, a significant amount of AFB1, which was enough to induce cytotoxic effects on the primary hepatocytes, could be incorporated into the primary fibroblasts when the concentrations of AFB1 were increased. Characterization of the AFB1-associated cellular components showed that most of them were DNA, RNA, and proteins in the primary hepatocytes, while in the primary fibroblasts a large portion of the incorporated AFB1 was recovered from lipid fractions. In addition, the selective binding of [3H]AFB1 to several proteins was observed only in the primary hepatocytes. The possible role of the AFB1-binding proteins are also discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号