首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ~2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins.  相似文献   

2.
Eukaryotic cells respond to low-oxygen concentrations by upregulating hypoxic nuclear genes (hypoxic signaling). Although it has been shown previously that the mitochondrial respiratory chain is required for hypoxic signaling, its underlying role in this process has been unclear. Here, we find that yeast and rat liver mitochondria produce nitric oxide (NO) at dissolved oxygen concentrations below 20 microM. This NO production is nitrite (NO2-) dependent, requires an electron donor, and is carried out by cytochrome c oxidase in a pH-dependent fashion. Mitochondrial NO production in yeast is influenced by the YHb flavohemoglobin NO oxidoreductase, stimulates expression of the hypoxic nuclear gene CYC7, and is accompanied by an increase in protein tyrosine nitration. These findings demonstrate an alternative role for the mitochondrial respiratory chain under hypoxic or anoxic conditions and suggest that mitochondrially produced NO is involved in hypoxic signaling, possibly via a pathway that involves protein tyrosine nitration.  相似文献   

3.
Induction of the mitochondrial nitrate-respiration (denitrification) system of the fungus Fusarium oxysporum requires the supply of low levels of oxygen (O(2)). Here we show that O(2) and nitrate (NO(3)(-)) respiration function simultaneously in the mitochondria of fungal cells incubated under hypoxic, denitrifying conditions in which both O(2) and NO(3)(-) act as the terminal electron acceptors. The NO(3)(-) and nitrite (NO(2)(-)) reductases involved in fungal denitrification share the mitochondrial respiratory chain with cytochrome oxidase. F. oxysporum cytochrome c(549) can serve as an electron donor for both NO(2)(-) reductase and cytochrome oxidase. We are the first to demonstrate hybrid respiration in respiring eukaryotic mitochondria.  相似文献   

4.
Mammalian tissues produce nitric oxide (NO) to modify proteins at heme and sulfhydryl sites, thereby regulating vital cell functions. The majority of NO produced is widely assumed to be neutralized into supposedly inert oxidation products including nitrite (NO2(-)). Here we show that nitrite, also ubiquitous in dietary sources, is remarkably efficient at modifying the same protein sites, and that physiological nitrite concentrations account for the basal levels of these modifications in vivo. We further find that nitrite readily affects cyclic GMP production, cytochrome P450 activities, and heat shock protein 70 and heme oxygenase-1 expression in a variety of tissues. These cellular activities of nitrite, combined with its stability and abundance in vivo, suggest that this anion has a distinct and important signaling role in mammalian biology, perhaps by serving as an endocrine messenger and synchronizing agent. Thus, nitrite homeostasis may be of great importance to NO biology.  相似文献   

5.
Frank B. Jensen 《BBA》2009,1787(7):841-862
Nitrite is endogenously produced as an oxidative metabolite of nitric oxide, but it also functions as a NO donor that can be activated by a number of cellular proteins under hypoxic conditions. This article discusses the physiological role of nitrite and nitrite-derived NO in blood flow regulation and cytoprotection from a comparative viewpoint, with focus on mammals and fish. Constitutive nitric oxide synthase activity results in similar plasma nitrite levels in mammals and fish, but nitrite can also be taken up across the gills in freshwater fish, which has implications for nitrite/NO levels and nitrite utilization in hypoxia. The nitrite reductase activity of deoxyhemoglobin is a major mechanism of NO generation from nitrite and may be involved in hypoxic vasodilation. Nitrite is readily transported across the erythrocyte membrane, and the transport is enhanced at low O2 saturation in some species. Also, nitrite preferentially reacts with deoxyhemoglobin rather than oxyhemoglobin at intermediate O2 saturations. The hemoglobin nitrite reductase activity depends on heme O2 affinity and redox potential and shows species differences within mammals and fish. The NO forming capacity is elevated in hypoxia-tolerant species. Nitrite-induced vasodilation is well documented, and many studies support a role of erythrocyte/hemoglobin-derived NO. Vasodilation can, however, also originate from nitrite reduction within the vessel wall, and at present there is no consensus regarding the relative importance of competing mechanisms. Nitrite reduction to NO provides cytoprotection in tissues during ischemia-reperfusion events by inhibiting mitochondrial respiration and limiting reactive oxygen species. It is argued that the study of hypoxia-tolerant lower vertebrates and diving mammals may help evaluate mechanisms and a full understanding of the physiological role of nitrite.  相似文献   

6.
Nitration of protein tyrosine residues to 3-nitrotyrosine (NO2Tyr) serves as both a marker and mediator of pathogenic reactions of nitric oxide (*NO), with peroxynitrite (ONOO-) and leukocyte peroxidase-derived nitrogen dioxide (*NO2) being proximal mediators of nitration reactions in vivo. Cytochrome c is a respiratory and apoptotic signaling heme protein localized exofacially on the inner mitochondrial membrane. We report herein a novel function for cytochrome c as a catalyst for nitrite (NO2-) and hydrogen peroxide (H2O2)-mediated nitration reactions. Cytochrome c catalyzes both self- and adjacent-molecule (hydroxyphenylacetic acid, Mn-superoxide dismutase) nitration via heme-dependent mechanisms involving tyrosyl radical and *NO2 production, as for phagocyte peroxidases. Although low molecular weight phenolic nitration yields were similar for cytochrome c and the proteolytic fragment of cytochrome c microperoxidase-11 (MPx-11), greater extents of protein nitration occurred when MPx-11 served as catalyst. Partial proteolysis of cytochrome c increased both the peroxidase and nitrating activities of cytochrome c. Extensive tyrosine nitration of Mn-superoxide dismutase occurred when exposed to either cytochrome c or MPx-11 in the presence of H2O2 and NO2-, with no apparent decrease in catalytic activity. These results reveal a post-translational tyrosine modification mechanism that is mediated by an abundant hemoprotein present in both mitochondrial and cytosolic compartments. The data also infer that the distribution of specific proteins capable of serving as potent catalysts of nitration can lend both spatial and molecular specificity to biomolecule nitration reactions.  相似文献   

7.
Anaerobic cytochrome c552 was purified to electrophoretic homogeneity by ion-exchange chromatography and gel filtration from a mutant of Escherichia coli K 12 that synthesizes an increased amount of this pigment. Several molecular and enzymatic properties of the cytochrome were investigated. Its relative molecular mass was determined to be 69 000 by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. It was found to be an acidic protein that existed in the monomeric form in the native state. From its heme and iron contents, it was concluded to be a hexaheme protein containing six moles of heme c/mole protein. The amino-acid composition and other properties of the purified cytochrome c552 indicated its similarity to Desulfovibrio desulfuricans hexaheme cytochrome. The cytochrome c552 showed nitrite and hydroxylamine reductase activities with benzyl viologen as an artificial electron donor. It catalyzed the reduction of nitrite to ammonia in a six-electron transfer. FMN and FAD also served as electron donors for the nitrite reduction. The apparent Michaelis constants for nitrite and hydroxylamine were 110 microM and 18 mM, respectively. The nitrite reductase activity of the cytochrome c552 was inhibited effectively by cupric ion and cyanide.  相似文献   

8.
Nitrite was recognized as a potent vasodilator >130 years and has more recently emerged as an endogenous signaling molecule and modulator of gene expression. Understanding the molecular mechanisms that regulate nitrite metabolism is essential for its use as a potential diagnostic marker as well as therapeutic agent for cardiovascular diseases. In this study, we have identified human cystathionine ß-synthase (CBS) as a new player in nitrite reduction with implications for the nitrite-dependent control of H2S production. This novel activity of CBS exploits the catalytic property of its unusual heme cofactor to reduce nitrite and generate NO. Evidence for the possible physiological relevance of this reaction is provided by the formation of ferrous-nitrosyl (FeII-NO) CBS in the presence of NADPH, the human diflavin methionine synthase reductase (MSR) and nitrite. Formation of FeII-NO CBS via its nitrite reductase activity inhibits CBS, providing an avenue for regulating biogenesis of H2S and cysteine, the limiting reagent for synthesis of glutathione, a major antioxidant. Our results also suggest a possible role for CBS in intracellular NO biogenesis particularly under hypoxic conditions. The participation of a regulatory heme cofactor in CBS in nitrite reduction is unexpected and expands the repertoire of proteins that can liberate NO from the intracellular nitrite pool. Our results reveal a potential molecular mechanism for cross-talk between nitrite, NO and H2S biology.  相似文献   

9.
Cytochrome c nitrite reductase catalyzes the 6-electron reduction of nitrite to ammonia. This second part of the respiratory pathway of nitrate ammonification is a key step in the biological nitrogen cycle. The x-ray structure of the enzyme from the epsilon-proteobacterium Wolinella succinogenes has been solved to a resolution of 1.6 A. It is a pentaheme c-type cytochrome whose heme groups are packed in characteristic motifs that also occur in other multiheme cytochromes. Structures of W. succinogenes nitrite reductase have been obtained with water bound to the active site heme iron as well as complexes with two inhibitors, sulfate and azide, whose binding modes and inhibitory functions differ significantly. Cytochrome c nitrite reductase is part of a highly optimized respiratory system found in a wide range of Gram-negative bacteria. It reduces both anionic and neutral substrates at the distal side of a lysine-coordinated high-spin heme group, which is accessible through two different channels, allowing for a guided flow of reaction educt and product. Based on sequence comparison and secondary structure prediction, we have demonstrated that cytochrome c nitrite reductases constitute a protein family of high structural similarity.  相似文献   

10.
Nitric oxide (NO(*)) signaling is diverse, and involves reaction with free radicals, metalloproteins, and specific protein amino acid residues. Prominent among these interactions are the heme protein soluble guanylate cyclase and cysteine residues within several proteins such as caspases, the executors of apoptosis. Another well characterized site of NO(*) binding is the terminal complex of the mitochondrial respiratory chain, cytochrome c oxidase, although the downstream signaling effects of this interaction remain unclear. Recently, it has been recognized that the intracellular formation of hydrogen peroxide (H(2)O(2)) by controlled mechanisms contributes to what we term "redox tone," and so controls the activity and activation thresholds of redox-sensitive signaling pathways. In this hypothesis paper, it is proposed that NO(*)-dependent modulation of the respiratory chain can control the mitochondrial generation of H(2)O(2) for cell signaling purposes without affecting ATP synthesis.  相似文献   

11.
The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.  相似文献   

12.
Cytochrome P450nor is involved in fungal denitrification as nitric oxide (NO) reductase. Although the heme protein has been known to occur in restricted species of fungi that belong to ascomycotina, we have previously suggested that it would also occur in the yeast Trichosporon cutaneum, which is phylogenetically far from those P450nor-producing ascomycetous fungi. Here we isolated and characterized the heme protein from the basidiomycetous yeast T. cutaneum. P450nor of the yeast (TcP450nor) exhibited properties in terms of catalysis, absorption spectrum and molecular mass that are almost identical to those of its counterparts in ascomycetous fungi. We also isolated and sequenced its cDNA. The predicted primary structure of TcP450nor showed high sequence identities (around 65%) to those of other P450nors, indicating that they belong to the same family. TcP450nor protein cofractionated with cytochrome c oxidase by subcellular fractionation and its predicted primary structure contained an extension on its amino terminus that is characteristic of a mitochondrial-targeting signal, indicating that it is a mitochondrial protein like some of the isoforms of other fungi. On the other hand, TcP450nor was unique in that inducers such as nitrate, nitrite, or NO were not required for its production in the cells. The occurrence of P450nor across the subdivisions of eumycota suggests that P450nor and denitrification are distributed more universally among fungi than was previously thought.  相似文献   

13.
The mitochondrial respiratory chain has been reported to play a role in the stabilization of HIF-1α when mammalian cells experience hypoxia, most likely through the generation of free radicals. Although previous studies have suggested the involvement of superoxide catalyzed by complex III more recent studies raise the possibility that nitric oxide (NO) catalyzed by cytochrome c oxidase (Cco/NO), which functions in hypoxic signaling in yeast, may also be involved. Herein, we have found that HEK293 cells, which do not express a NOS isoform, possess Cco/NO activity and that this activity is responsible for an increase in intracellular NO levels when these cells are exposed to hypoxia. By using PTIO, a NO scavenger, we have also found that the increased NO levels in hypoxic HEK293 cells help stabilize HIF-1α. These findings suggest a new mechanism for mitochondrial involvement in hypoxic signaling in mammalian cells.  相似文献   

14.
Cytochrome cd1 nitrite reductase has been purified from Pseudomonas stutzeri strain JM 300. This enzyme appears to be a dimer with a subunit molecular mass of 54 kDa and its isoelectric point is determined to be 5.4. The N terminus of amino acid sequence has strong homology with that of nitrite reductase from P. aeruginosa. The apoprotein of this enzyme has been reconstituted with native and synthetic heme d1. The nitrite reductase activity measured by NO and N2O gas evolution can be restored to 82% of the activity of the original enzyme when the protein was reconstituted with the native heme d1 and to 77% of the activity when reconstituted with the synthetic heme d1. The absorption spectra of both reconstituted enzymes are essentially identical to that of the original nitrite reductase. These results further substantiate the novel dione structure of heme d1 as proposed. The loss of NO2- reducing activity in the absence of heme d1 and its restoration by addition of heme d1 provides further evidence that heme d1 plays a key role in the conversion of NO2- to NO and N2O.  相似文献   

15.
16.
Accumulating evidence suggests that the simple and ubiquitous anion salt, nitrite (NO(2)(-)), is a physiological signaling molecule with potential roles in intravascular endocrine nitric oxide (NO) transport, hypoxic vasodilation, signaling, and cytoprotection after ischemia-reperfusion. Human and animal studies of nitrite treatment and NO gas inhalation provide evidence that nitrite mediates many of the systemic therapeutic effects of NO gas inhalation, including peripheral vasodilation and prevention of ischemia-reperfusion-mediated tissue infarction. With regard to nitrite-dependent hypoxic signaling, biochemical and physiological studies suggest that hemoglobin possesses an allosterically regulated nitrite reductase activity that reduces nitrite to NO along the physiological oxygen gradient, potentially contributing to hypoxic vasodilation. An expanded consideration of nitrite as a hypoxia-dependent intrinsic signaling molecule has opened up a new field of research and therapeutic opportunities for diseases associated with regional hypoxia and vasoconstriction.  相似文献   

17.
The reduction of circulating nitrite to nitric oxide (NO) has emerged as an important physiological reaction aimed to increase vasodilation during tissue hypoxia. Although hemoglobin, xanthine oxidase, endothelial NO synthase, and the bc(1) complex of the mitochondria are known to reduce nitrite anaerobically in vitro, their relative contribution to the hypoxic vasodilatory response has remained unsolved. Using a wire myograph, we have investigated how the nitrite-dependent vasodilation in rat aortic rings is controlled by oxygen tension, norepinephrine concentration, soluble guanylate cyclase (the target for vasoactive NO), and known nitrite reductase activities under hypoxia. Vasodilation followed overall first-order dependency on nitrite concentration and, at low oxygenation and norepinephrine levels, was induced by low-nitrite concentrations, comparable to those found in vivo. The vasoactive effect of nitrite during hypoxia was abolished on inhibition of soluble guanylate cyclase and was unaffected by removal of the endothelium or by inhibition of xanthine oxidase and of the mitochondrial bc(1) complex. In the presence of hemoglobin and inositol hexaphosphate (which increases the fraction of deoxygenated heme), the effect of nitrite was not different from that observed with inositol hexaphosphate alone, indicating that under the conditions investigated here deoxygenated hemoglobin did not enhance nitrite vasoactivity. Together, our results indicate that the mechanism for nitrite vasorelaxation is largely intrinsic to the vessel and that under hypoxia physiological nitrite concentrations are sufficient to induce NO-mediated vasodilation independently of the nitrite reductase activities investigated here. Possible reaction mechanisms for nitrite vasoactivity, including formation of S-nitrosothiols within the arterial smooth muscle, are discussed.  相似文献   

18.
To investigate the nitrite reducing activity of microperoxidases (mps) in the presence of methyl viologen and dithionite, the fragments C14-K22 (mp9), V11-L32 (mp22), and G1-M65 (mp65) containing heme were prepared by enzymatic hydrolysis of commercially equine heart cytochrome c (Cyt c), in which His is axially coordinated to heme iron, and acts as its fifth ligand. The nitrite reducing activity of mps was measured under anaerobic condition, and the nitrite reducing activity of mps increased with the cutting of the peptide chain. The activity of the shortest nonapeptide mp9 was approximately 120-fold that of Cyt c (104 amino acid residues) and 3.2-fold that of nitrite reductase (EC 1.7.7.1) from Escherichia coli. In the nitrite reduction by mp, nitrite was completely reduced to ammonia. We presumed that ferrous mps reduced NO2- to NO by donating one electron, the NO was completely reduced to NH4+ under anaerobic condition via ferrous-NO complexes as a reaction intermediate using visible spectra and ESR spectra, and this overall reaction was a 6-electron and 8-proton reduction. Sepharose-immobilized mp9 had a nitrite reducing activity similar to that of mp9 in solution, and the resin retained the activity after five uses and even 1-year storage. The mp will be able to use as a substitute for nitrite reductase.  相似文献   

19.
Cytochrome cd(1) is a respiratory nitrite reductase found in the periplasm of denitrifying bacteria. When fully reduced Paracoccus pantotrophus cytochrome cd(1) is mixed with nitrite in a stopped-flow apparatus in the absence of excess reductant, a kinetically stable complex of enzyme and product forms, assigned as a mixture of cFe(II) d(1)Fe(II)-NO(+) and cFe(III) d(1)Fe(II)-NO (cd(1)-X). However, in order for the enzyme to achieve steady-state turnover, product (NO) release must occur. In this work, we have investigated the effect of a physiological electron donor to cytochrome cd(1), the copper protein pseudoazurin, on the mechanism of nitrite reduction by the enzyme. Our data clearly show that initially oxidized pseudoazurin causes rapid further turnover by the enzyme to give a final product that we assign as all-ferric cytochrome cd(1) with nitrite bound to the d(1) heme (i.e. from which NO had dissociated). Pseudoazurin catalyzed this effect even when present at only one-tenth the stoichiometry of cytochrome cd(1). In contrast, redox-inert zinc pseudoazurin did not affect cd(1)-X, indicating a crucial role for electron movement between monomers or individual enzyme dimers rather than simply a protein-protein interaction. Furthermore, formation of cd(1)-X was, remarkably, accelerated by the presence of pseudoazurin, such that it occurred at a rate consistent with cd(1)-X being an intermediate in the catalytic cycle. It is clear that cytochrome cd(1) functions significantly differently in the presence of its two substrates, nitrite and electron donor protein, than in the presence of nitrite alone.  相似文献   

20.
The reaction between reduced Pseudomonas nitrite reductase and nitrite has been studied by stopped-flow and rapid-freezing EPR spectroscopy. The interpretation of the kinetics at pH 8.0 is consistent with the following reaction mechanism (where k1 and k3 much greater than k2). [formula: see text] The bimolecular step (Step 1) is very fast, being lost in the dead time of a rapid mixing apparatus; the stoichiometry of the complex has been estimated to correspond to one NO2- molecule/heme d1. The final species is the fully reduced enzyme with NO bound to heme d1; and at all concentrations of nitrite, there is no evidence for dissociation of NO or for further reduction of NO to N2O. Step 2 is assigned to an internal electron transfer from heme c to reduced NO-bound heme d1 occurring with a rate constant of 1 s-1; this rate is comparable to the rate of internal electron transfer previously determined when reducing the oxidized enzyme with azurin or cytochrome c551. When heme d1 is NO-bound, the rate at which heme c can accept electrons from ascorbate is remarkably increased as compared to the oxidized enzyme, suggesting an increase in the redox potential of the latter heme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号