首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 23 kDa protein (p23) coded by the 3'-terminal gene of Citrus tristeza virus (CTV), a member of the genus Closterovirus with the largest genome among plant RNA viruses, is an RNA-binding protein that contains a motif rich in cysteine and histidine residues in the core of a putative zinc-finger domain. On this basis, a regulatory role for CTV replication or gene expression has been suggested for p23. To explore whether over-expression of this protein in transgenic plants could affect the normal CTV infection process, transgenic Mexican lime plants were generated carrying the p23 transgene, or a truncated version thereof, under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Constitutive expression of p23 induced phenotypic aberrations that resembled symptoms incited by CTV in non-transgenic lime plants, whereas transgenic plants expressing the p23 truncated version were normal. The onset of CTV-like symptoms in p23 -transgenic plants was associated with the expression of p23, and its accumulation level paralleled the intensity of the symptoms. This demonstrates that p23 is involved in symptom development and that it most likely plays a key role in CTV pathogenesis. This is the first case in which a protein encoded by a woody plant-infecting RNA virus has been identified as being directly involved in pathogenesis in its natural host. This finding also delimits a small region of the large CTV genome for the future mapping of specific pathogenic determinants.  相似文献   

2.
A cold-induced gene of 669 bp in length without introns, PicW, was cloned from Picea. wilsonii, a cold tolerant conifer species. Sequence analysis showed that it was a member of the dehydrin family because of its conserved amino acid constitution and protein secondary structure. The protein was rich in hydrophilic amino acids such as alanine, lysine, glutamic acid, glutamine and threonine, but devoid of two hydrophobic amino acids, cysteine and tryptophan. The PicW gene contained five repeated motifs homologous to the core K-segment in dehydrins. Protein secondary structure prediction showed that PicW comprised 29 % α-helix, mostly in the K-homologous segment, and random coils. The PicW gene was cloned into the expression vector PEZR(K)-LC under the 35S promoter and transformed into tobacco plants. After treatment at ?5 °C for 3 h, all of the tobacco plants were wilting. However, the transgenic plants showed better growth performance than wild-type plants. Further tests of physiological indexes including relative electrolyte leakage and malondialdehyde content, proline and soluble sugar content also revealed significant differences between the wild-type and transgenic tobacco plants. It was concluded that the PicW gene could be an important gene resource for freezing-tolerant plant breeding.  相似文献   

3.
Wang H  Chen X  Xing X  Hao X  Chen D 《Plant cell reports》2010,29(12):1391-1399
Atrazine chlorohydrolase (AtzA) catalyzes hydrolytic dechlorination and can be used in detoxification of atrazine, a herbicide widely employed in the control of broadleaf weeds. In this study, to investigate the potential use of transgenic tobacco plants for phytoremediation of atrazine, atzA genes from Pseudomonas sp. strain ADP and Arthrobacter strain AD1 were transferred into tobacco. Three and four transgenic lines, expressing atzA-ADP and atzA-AD1, respectively, were produced by Agrobacterium-mediated transformation. Molecular characterization including PCR, RT-PCR and Southern blot revealed that atzA was inserted into the tobacco genome and stably inherited by and expressed in the progenies. Seeds of the T1 transgenic lines had a higher germination percentage and longer roots than the untransformed plants in the presence of 40–150 mg/l atrazine. The T2 transgenic lines grew taller, gained more dry biomass, and had higher total chlorophyll content than the untransformed plants after growing in soil containing 1 or 2 mg/kg atrazine for 90 days. No atrazine residue remained in the soil in which the T2 transgenic lines were grown (except 401), while, in the case of the untransformed plants, 0.91 mg (81.3%) and 1.66 mg (74.1%) of the atrazine still remained in the soil containing 1 and 2 mg/kg of atrazine, respectively, indicating that the transgenic lines could degrade atrazine effectively. The transgenic tobacco lines developed could be useful for phytoremediation of atrazine-contaminated soil and water.  相似文献   

4.
Within the Bunyaviridae virus family, members of the genus Tospovirus are unique in their ability to infect plants. A characteristic genetic difference between tospoviruses and the animal-infecting members of this virus family is the occurrence of an additional gene, denoted NSM, located on the genomic M RNA segment. This gene has previously been implicated in the cell-to-cell movement of this virus during systemic infection. Transgenic tobacco plants have been obtained expressing the NSM protein of tomato spotted wilt virus (TSWV), the type member of the tospoviruses, from a constitutive promoter. Detectable amounts of the NSM protein could be observed in plants from nine different lines. The protein was only detectable in fractions enriched for cell wall material. More detailed immunogold labelling studies revealed specific association of NSM protein with plasmodesmata. Plants accumulating the NSM protein to detectable levels developed aberrations in growth, resulting in a significant reduction of size and accelerated senescence. In addition, these plants are restricted in their capacity to produce flowers. The results presented provide additional evidence that the NSM protein, by modifying plasmodesmata, represents the cell-to-cell movement function of tospoviruses. Furthermore, the phenotype of the NSM transgenic plants suggests involvement of the NSM gene product in TSWV symptom expression  相似文献   

5.
6.
7.
Nitrilase (E.C. 3.5.5.1) cloned from Arabidopsis thaliana converts indole-3-acetonitrile to the plant growth hormone, indole-3-acetic acid in vitro. To probe the capacity of this enzyme under physiological conditions in vivo, the cDNA PM255, encoding nitrilase II, was stably integrated into the genome of Nicotiana tabacum by direct protoplast transformation under the control of the CaMV-35S promotor. The regenerated plants appeared phenotypically normal. Nitrilase II was expressed, based on the occurrence of its mRNA and polypeptide. The enzyme was catalytically active, when extracted from leaf tissue of transgenic plants (specific activity: 25 fkat mg?1 protein with indole3-acetonitrile as substrate). This level of activity was lower than that found in A. thaliana, and this was deemed essential for the in vivo analysis. Leaf tissue from the transgenic plants converted 1-[13C]-indole-3-acetonitrile to 1-[13C]-indole-3-acetic acid in vivo as determined by HPLC/ GC-MS analysis. Untransformed tobacco was unable to catalyze this reaction. When transgenic seeds were grown on medium in the absence of indole-3-acetonitrile, germination and seedling growth appeared normal. In the presence of micromolar levels of exogenous indole-3-acetonitrile, a strong auxin-overproducing phenotype developed resulting in increased lateral root formation (at 10 µM indole-3-acetonitrile) or stunted shoot growth, excessive lateral root initiation, inhibition of root out-growth and callus formation at the root/shoot interface (at 100 µM indole-3-acetonitrile). Collectively, these data prove the ability of nitrilase II to convert low micromolar levels of indole-3-acetonitrile to indole-3-acetic acid in vivo, even when expressed at subphysiological levels thereby conferring a high-auxin phenotype upon transgenic plants. Thus, the A. thaliana nitrilase activity, which exceeds that of the transgenic plants, would be sufficient to meet the requirements for auxin biosynthesis in vivo.  相似文献   

8.
Transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) plants were regenerated after cocultivation of leaf explants withAgrobacterium tumefaciens strain LBA4404 harboring a plasmid that contained the coat protein (CP) gene of cucumber mosaic virus (CMV-As). PCR and Southern blot analyses revealed that the CMV CP gene was successfully introduced into the genomic DNA of the transgenic tobacco plants. Transgenic plants (CP+) expressing CP were obtained and used for screening the virus resistance. They could be categorized into three types after inoculation with the virus: virus-resistant, delay of symptom development, and susceptible type. Most of the CP+ transgenic tobacco plants failed to develop symptoms or showed systemic symptom development delayed for 5 to 42 days as compared to those of nontransgenic control plants after challenged with the same virus. However, some CP+ transgenic plants were highly susceptible after inoculation with the virus. Our results suggest that the CP-mediated viral resistance is readily applicable to CMV disease in other crops.  相似文献   

9.
10.
A bacterial rnc gene coding for a double-stranded RNA-dependent RNase III endoribonuclease and a mutant, rnc70, were expressed in tobacco plants. The RNase III protein produced in the transgenic plants was the same size as the bacterial protein. Expression of the wild-type gene could cause stunting in some plant lines, but not in others. Expression of the mutant protein did not affect normal growth and development of the transgenic plants. Transgenic plants of the R1 and R2 generations, expressing the wild type, as well as a mutant protein, were resistant to infection by three disparate RNA plant viruses with a divided genome but not against two viruses with a single-stranded RNA genome. Introduction of the rnc gene in crop plants may provide resistance to economically important virus diseases.  相似文献   

11.
Transgenic tobacco plants expressing the coat protein (CP) gene of tobacco mosaic virus were tested for resistance against infection by five other tobamoviruses sharing 45-82% homology in CP amino acid sequence with the CP of tobacco mosaic virus. The transgenic plants (CP+) showed significant delays in systemic disease development after inoculation with tomato mosaic virus or tobacco mild green mosaic virus compared to the control (CP-) plants, but showed no resistance against infection by ribgrass mosaic virus. On a transgenic local lesion host, the CP+ plants showed greatly reduced numbers of necrotic lesions compared to the CP- plants after inoculation with tomato mosaic virus, pepper mild mottle virus, tobacco mild green mosaic virus, and Odontoglossum ringspot virus but not ribgrass mosaic virus. The implications of these results are discussed in relation to the possible mechanism(s) of CP-mediated protection.  相似文献   

12.
Citrus canker provoked by Xanthomonas axonopodis pv. citri is a bacterial disease causing severe losses in all citrus-producing areas around the world. Xanthomonas infection is considered as an endemic disease in Northeast and Northwest Argentina, affecting as much as 10% of commercial citrus plantations. There is not known natural resistance neither in orange varieties nor in rootstocks used for grafting of commercial cultivars. To introduce resistance to this disease, plants of Pineapple sweet orange were transformed with a genetic construct allowing constitutive accumulation of dermaseptin. In comparison with non-transformed plants, transgenic plants showed symptom reduction levels of up to 50% in in planta assays performed under controlled conditions.  相似文献   

13.
14.
The rgp1 gene, originally Isolated from rice seedlings, encodes a small GTP-binding protein which is related to the product of the human proto-oncogene, ras-p21. To determine the physiological role of the rgp1 protein, rgp1-p25, the coding region of rgp1 was introduced into tobacco plants in both sense and antisense orientations. Transformants, which were found to contain the rgp1 gene at up to three loci, showed distinct phenotypic changes. The most notable was a reduction in apical dominance with increased tillering, together with dwarfism or abnormal flower development or both. These effects were similarly observed in both sense and antisense transformants. Northern hybridization analysis showed that rgp1 was expressed only in phenotypically abnormal transformants and not in the apparently normal phenotypes. Furthermore, the R1 progenies from most transformants co-segregated into a 3:1 ratio for both kanamycin resistance and tillering. The expression of tgp1, a presumed tobacco homologue of rgp1, was markedly reduced in transformants expressing the antisense rgp1, whereas it was apparently unaffected in transformants with sense rgp1. These observations suggest that the phenotypic changes in antisense transformants may be mediated by an effect on native tgp1 mRNA, whereas in sense transformants the changes may be induced by over-production of rgp1-p25. The possibility that the increased tillering may be related to abnormal phytohormone metabolism or response pathways, and that rgp1-p25 may mediate the transmission of signals in these pathways is discussed.  相似文献   

15.
The gene coding for the secreted Serratia marcescens endonuclease was fused with the mannopine synthase promoter of Agrobacterium tumefaciens Ti plasmid and transferred to Nicotiana tabacum SR1 plants. The promoter is leaf- and root-specific. The resulting transgenic plants demonstrated elevated nuclease activity. The level of the transgene product was determined in the transgenic lines.  相似文献   

16.
The protein Tarin 1, from Colocasia esculenta, was expressed in Nicotiana tabacum. Bioassays were done on plants expressing Tarin 1 at different levels using Spodoptera frugiperda larvae, various bacteria and fungi and the root‐knot nematode Meloidogyne javanica. It was found that S. frugiperda larvae fed on transformed plants had retarded and lower pupation, lower accumulated biomass and higher mortality rate than larvae fed on control plants. Also, Tarin 1 was found to inhibit the growth in vitro of Pseudomonas syringae pv. tomato. For Meloidogyne javanica, both relative replication and root damage were greater in control plants than in transformed plants, but the results were not statistically significant. This work illustrates the effects of plants expressing Tarin 1, on the growth and development of insects and bacteria, and shows its potential for pest management.  相似文献   

17.
18.
Transgenic grapefruit plants (Citrus paradisi cv. ‘Duncan’) with the isopentenyltransferase (ipt) gene under the control of APETALA3 promoter have been produced using Agrobacterium-mediated transformation. The relative expression level of the ipt gene was between 2.3 and 7 times higher in transformed plants than in the wild-type but despite the presence of a tissue-specific promoter, the expression was not limited only to flower tissue. Increased levels of trans-zeatin riboside between 9.4 and 32-fold found in transgenic grapefruit were considered the consequence of ectopic expression of the ipt gene. Chlorophyll levels in fully expanded uppermost leaves were also about 30% higher in transgenic than in wild-type plants. Involvement of cytokinins in control of expression of three pathogenesis-related protein genes: β-1,3-glucanase, a stress related PR gene 24P220, and an acidic chitinase, 24P262 was examined. Expression of β-1,3-glucanase, and 24P220 gene were significantly enhanced in transgenic plants while the expression of chitinase was reduced to low levels. Our results confirm the effect of cytokinins on expression of genes implicated in the response of grapefruit plants to pathogen attack and suggest a possible role of cytokinins in pathogen resistance.  相似文献   

19.
For the nuclear replicating bipartite geminiviruses such as squash leaf curl to systemically infect the host requires the active participation of two virus-encoded movement proteins, BR1 and BL1. These act in a cooperative manner to transport the viral single-stranded DNA genome from its site of replication in the nucleus to the cell periphery (A.A. Sanderfoot, S.G. Lazarowitz [1995] Plant Cell 7: 1185-1194). We have proposed that BR1 functions as a nuclear shuttle protein, transporting the viral single-stranded DNA to and from the nucleus as a complex that is recognized by BL1 for movement to adjacent cells. To further investigate this, we expressed BR1 mutants known to affect viral infectivity in Spodoptera frugiperda insect cells and Nicotiana tabacum L. cv Xanthi protoplasts and found these to be defective in either their nuclear targeting or their ability to be redirected to the cell periphery when co-expressed with BL1. Translational fusions to beta-glucuronidase and alanine-scanning mutagenesis further demonstrated that the C-terminal 86 amino acids of BR1 contains a domain(s) essential for its interaction with BL1 and identified two nuclear localization signals within the N-terminal 113 residues of BR1. These nuclear localization signals were precisely located within distinct 16- and 22-peptide segments of BR1. These studies support and extend our model for squash leaf curl virus movement, showing that BR1 has a domain structure, with an N-terminal region required for nuclear targeting and a C-terminal region required for its interaction with BL1.  相似文献   

20.
The bipartite geminiviruses such as tomato golden mosaic virus (TGMV) and squash leaf curl virus (SqLCV) have two single-stranded circular genomic DNAs, the A and B components, thought to be replicated from double-stranded circular DNA intermediates. Although it has been presumed that the origin sequences for viral replication are located in the highly conserved 200-nucleotide common region (CR) present in both genomic components and that the viral-encoded AL1 protein interacts with these sequences to effect replication, there has been no evidence that this is in fact so. We have investigated these questions, demonstrating selectivity and sequence specificity in this protein-DNA interaction. Simple component switching between the DNAs of TGMV and SqLCV and analysis of replication in leaf discs showed that whereas the A components of both TGMV and SqLCV promote their own replication and that of their cognate B component, neither replicates the noncognate B component. Furthermore, using an in vivo functional replication assay, we found that cloned viral CR sequences function as a replication origin and direct the replication of nonviral sequences in the presence of AL1, with both circular single-stranded and double-stranded DNA being synthesized. Finally, by the creation of chimeric viral CRs and specific subfragments of the viral CR, we demonstrated sequence-specific recognition of the replication origin by the AL1 protein, thereby localizing the origin to an approximately 90-nucleotide segment in the AL1 proximal side of the CR that includes the conserved geminiviral stem-loop structure and approximately 60 nucleotides of 5' upstream sequence. By deletional analysis, we further demonstrated that the conserved stem-loop structure is essential for replication. These studies identify the functional viral origin of replication within the CR, demonstrating that sequence-specific recognition of this origin by the AL1 protein is required for replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号