首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human oxyhemoglobin reacted with 4-isothiocyanatobenzoic acid shows a decreased oxygen affinity that does not change with increasing chloride concentration indicating that all of the oxygen-linked chloride binding sites are blocked in the modified protein. By contrast, reaction of oxyhemoglobin with 4-isothiocyanatobenzenesulfonamide produces a modified protein with increased oxygen affinity below pH 7.3 that shows the expected decrease in oxygen affinity with increasing chloride concentration. The latter result demonstrates the importance of the negatively charged moiety in producing both the decrease in oxygen affinity and the effect on the oxygen-linked chloride binding sites produced by 4-isothiocyanatobenzoic acid. Reduction in the alkaline Bohr effect by 50% in the protein modified by 4-isothiocyanatobenzoic acid indicates that contribution to the alkaline Bohr effect is evenly divided between chloride dependent and chloride independent groups.  相似文献   

2.
Human hemoglobin, reacted at the four amino termini with 4-isothiocyanatobenzenesulphonic acid (Hb-ICBS), was separated into its constituent chains. Recombination of the ICBS-reacted chains with the unmodified mate chains produced the hybrid tetramers modified at either the beta or the alpha chains: alpha 2 beta 2ICBS and alpha 2ICBS beta 2. All of the modified tetramers show a reduced oxygen affinity and reduced cooperativity; furthermore the oxygen affinity of the Hb-ICBS and alpha 2 beta 2ICBS is unaffected by 2,3-bisphosphoglycerate while the oxygen affinity of alpha 2ICBS beta 2 is decreased in the presence of this organic phosphate. The oxygen affinity of Hb-ICBS and alpha 2ICBS beta 2 is independent of chloride concentration, while the alpha 2 beta 2ICBS hybrid shows a reduced response to this anion. The tetramers alpha 2ICBS beta 2 and alpha 2ICBS beta 2ICBS show a decreased alkaline Bohr effect, which can be rationalized as being due to disruption of the oxygen-linked chloride-binding sites; in the case of alpha 2 beta 2ICBS the Bohr effect is instead (partially) maintained. The functional properties of artificial tetramers have been studied also from a kinetic point of view by CO combination and the results obtained compare satisfactorily with equilibrium data. The possibility of obtaining selectively modified hemoglobins promises to provide further insight into the properties of the oxygen-linked anion-binding sites in hemoglobin.  相似文献   

3.
Jensen FB 《The FEBS journal》2008,275(13):3375-3387
The nitrite reductase activity of deoxyhemoglobin has received much recent interest because the nitric oxide produced in this reaction may participate in blood flow regulation during hypoxia. The present study used spectral deconvolution to characterize the reaction of nitrite with carp and rabbit hemoglobin at different constant oxygen tensions that generate the full range of physiological relevant oxygen saturations. Carp is a hypoxia-tolerant species with very high hemoglobin oxygen affinity, and the high R-state character and low redox potential of the hemoglobin is hypothesized to promote NO generation from nitrite. The reaction of nitrite with deoxyhemoglobin leads to a 1 : 1 formation of nitrosylhemoglobin and methemoglobin in both species. At intermediate oxygen saturations, the reaction with deoxyhemoglobin is clearly favored over that with oxyhemoglobin, and the oxyhemoglobin reaction and its autocatalysis are inhibited by nitrosylhemoglobin from the deoxyhemoglobin reaction. The production of NO and nitrosylhemoglobin is faster and higher in carp hemoglobin with high O(2) affinity than in rabbit hemoglobin with lower O(2) affinity, and it correlates inversely with oxygen saturation. In carp, NO formation remains substantial even at high oxygen saturations. When oxygen affinity is decreased by T-state stabilization of carp hemoglobin with ATP, the reaction rates decrease and NO production is lowered, but the deoxyhemoglobin reaction continues to dominate. The data show that the reaction of nitrite with hemoglobin is dynamically influenced by oxygen affinity and the allosteric equilibrium between the T and R states, and that a high O(2) affinity increases the nitrite reductase capability of hemoglobin.  相似文献   

4.
The normal and differential titration curves of liganded and unliganded hemoglobin were measured at various KCl concentrations (0.1 to 2.0 M). In this range of KCl concentrations, the curves for deoxyhemoglobin showed no salt-induced pK changes of titratable groups. In the same salt concentration range oxyhemoglobin showed a marked change in titration behavior which could only be accounted for by a salt-induced increase in pK of some titratable groups. These results show that the suppression of the alkaline Bohr effect by high concentrations of neutral univalent salt is not caused by a weakening of the salt bridges in deoxyhemoglobin but is due to an interaction of chloride ions with oxyhemoglobin. Measurements of the Bohr effect at various KCl concentrations showed that at low chloride ion concentration (5 times 10-3 M) the alkaline Bohr effect is smaller than at a concentration of 0.1 M. This observation indicates that at a chloride ion concentration of 0.1 M, part of the alkaline Bohr effect is due to an interaction of chloride ions with hemoglobin. Furthermore, at low concentrations of chloride ions the acid Bohr effect has almost vanished. This result suggests that part of the acid Bohr effect arises from an interaction of chloride ions with oxyhemoglobin. The dependence of the Bohr effect upon the chloride ion concentration can be explained by assuming specific binding of chloride ions to both oxy- and deoxyhemoglobin, with deoxyhemoglobin having the highest affinity.  相似文献   

5.
A Szabo  M Karplus 《Biochemistry》1976,15(13):2869-2877
The interaction of organic phosphates with hemoglobin is studied by use of a simple thermodynamic approach. A model-independent analysis is employed to evaluate the accuracy of Adair constants determined in the presence of 2,3-diphosphoglycerate (DPG). The change of oxygen affinity in the presence of phosphates is related to the macroscopic phosphate binding constants of oxy- and deoxyhemoglobin and used to extract such binding constants from oxygen equilibrium measurements. The change of the Bohr effect in the presence of phosphates and the competitive binding of carbon dioxide and DPG are treated quantitatively. The binding of organic phosphates is incorporated into an allosteric model, in which the effect of phosphate on both tertiary and quaternary structure changes is included. By use of this model, the factors which can be responsible for the increased functional heterogeneity of alpha and beta chains in the presence of phosphates are clarified.  相似文献   

6.
Bis(3,5-dibromosalicyl) fumarate and a number of related bifunctional reagents react preferentially with oxyhemoglobin to cross-link the beta chains within the 2,3-diphosphoglycerate-binding site. In this report we describe a new derivative cross-linked between the alpha chains which is formed specifically in the reaction with deoxyhemoglobin. X-ray crystallographic studies show that the cross-link lies between Lys-99 alpha 1 and Lys-99 alpha 2, spanning the central cavity of the tetramer. Lys-99 alpha 1 and Lys-99 alpha 2 are located within a cluster of charged residues very near the middle of the hemoglobin molecule. In oxyhemoglobin, this site is completely inaccessible to the cross-linking agent. Competition experiments with inositol hexaphosphate indicate that the compound enters the central cavity in deoxyhemoglobin through the cleft between the alpha chains. Despite the presence of the cross-link between the alpha chains, the modified hemoglobin remains highly cooperative. The Hill coefficient for HbXL99 alpha is 2.6. The oxygen affinity of the cross-linked derivative is decreased by approximately 2-fold; at pH 7.0 in the presence of 0.1 M NaCl the P50 is 13.9 mm Hg compared to 6.6 mm Hg for HbA. This difference appears to be due to relatively small changes in both KR, the association constant for binding of oxygen to the R state, and the allosteric constant L. Surprisingly, the isoelectric point of oxyHbXL99 alpha is almost identical to that of oxyHbA, whereas in the deoxy form the isoelectric point of the cross-linked derivative is decreased relative to native hemoglobin as expected due to the loss of the two positive charges of the modified amino groups. In agreement with these findings, the alkaline Bohr effect of HbXL99 alpha is decreased by more than 50%. Earlier studies argue strongly against the possibility that Lys-99 alpha is directly responsible for this large fraction of the Bohr effect in HbA. Analysis of the structure suggests that in the cross-linked derivative Glu-101 beta, which is in close proximity to Lys-99 alpha in oxyhemoglobin, becomes an acid Bohr group.  相似文献   

7.
Oxygen equilibrium curves of human hemoglobin Ao (HbAo) and human hemoglobin cross-linked between the alpha chains (alpha alpha Hb) by bis(3,5-dibromosalicyl) fumarate were measured as a function of pH and chloride or organic phosphate concentration. Compared to HbAo, the oxygen affinity of alpha alpha Hb was lower, cooperativity was maintained, although slightly reduced, and all heterotropic effects were diminished. The major effect of alpha alpha-cross-linking appears to be a reduction of the oxygen affinity of R-state hemoglobin under all conditions. However, while the oxygen affinity of T-state alpha alpha Hb was slightly reduced at physiologic chloride concentration and in the absence of organic phosphates, KT was the same for both hemoglobins in the presence of 2,3-diphosphoglycerate (or high salt) and higher for alpha alpha Hb in the presence of inositol hexaphosphate. The reduced O2 affinity arises from smaller binding constants for both T- and R-state alpha alpha Hb rather than through stabilization of the low affinity conformation. All four Adair constants could be determined for alpha alpha Hb under most conditions, but a3 could not be resolved for HbAo without constraining a4, suggesting that the cross-link stabilizes triply ligated intermediates of hemoglobin.  相似文献   

8.
We have studied the binding of inositol pentaphosphate (IPP) to the hemoglobins from two species of goose living at low and high altitudes, using the proton absorption method. Measurements were done at 25 and 37 degrees C in a pH range between 6.0 and 8.8. The bird hemoglobins show a high affinity and a binding stoichiometry of 1 IPP molecule/hemoglobin tetramer both in the ligated and unligated state, indicating the same binding site for IPP in oxy- and deoxyhemoglobin. The results indicate that the interaction of IPP with both geese hemoglobins is very similar. For the deoxyhemoglobins of both species the IPP-binding constant shows a strong pH dependence extending over a wide pH range (i.e. +/- 2 x 10(6) M at pH 8.8 and +/- 6 x 10(10) M at pH 6.0). The binding constant of IPP for the oxyhemoglobins shows a much weaker pH dependence (i.e. +/- 4 x 10(4) M at pH 8.8 and +/- 3 x 10(6) M at pH 6.0), indicating that the interaction of IPP with the goose hemoglobin is strongly dependent on the state of ligation of the protein. The IPP binding constants for the oxy- and deoxyhemoglobins are found to be in good agreement with the IPP-induced change in oxygen affinity of both hemoglobins as estimated from oxygen binding curves.  相似文献   

9.
The Gymnothorax unicolor hemoglobin system is characterized by two components, called cathodic and anodic on the basis of their isoelectric point, which were separated by ion-exchange chromatography. The oxygen-binding properties of the purified components were studied in the absence and presence of chloride and/or GTP or ATP in the pH range 6.5-8.0. Stripped cathodic hemoglobin showed a small reverse Bohr effect, high oxygen affinity, and low co-operativity; the addition of chloride only caused a small decrease in oxygen affinity. In the presence of GTP or ATP, the oxygen affinity was dramatically reduced, the co-operativity increased, and the reverse Bohr effect abolished. Stripped anodic hemoglobin is characterized by both low oxygen affinity and co-operativity, and displayed a normal Bohr effect; the addition of chloride increased co-operativity, whereas ATP and GTP significantly modulated oxygen affinity at acidic pH values, enhancing the Bohr effect and giving rise to the Root effect. The complete amino-acid sequences of the alpha and beta chains of both hemoglobins were established; the molecular basis of the functional properties of the hemoglobins is discussed in the light of the primary structure and compared with those of other fish hemoglobins.  相似文献   

10.
D Sacco  E Dellacherie 《FEBS letters》1986,199(2):254-258
Interactions of dextran sulfate with amino groups of oxy- and deoxyhemoglobin were followed by both potentiometric measurements between pH 6 and 7.3 and oxygen-binding studies. The uptake of protons observed upon addition of dextran sulfate to hemoglobin shows that the interaction with the deoxy form is strong and that the main site is probably located in the phosphate-binding beta-cavity, whereas the interaction with the oxy form is more diffuse, probably with a great number of relatively weak binding sites. The influence of dextran sulfate on the oxygen dissociation curve of hemoglobin confirms these findings, as the effect of the polymer is to lower hemoglobin affinity for oxygen to a great extent, which proves that it stabilizes the deoxy form more strongly than the oxy one.  相似文献   

11.
Previous mutational studies on Tyr42alpha variants as well as the current studies on the mutant hemoglobin alphaY42A show that the intersubunit interactions associated with Tyr42alpha significantly stabilize the alpha1beta2 interface of the quaternary-T deoxyhemoglobin tetramer. However, crystallographic studies, UV and visible resonance Raman spectroscopy, CO combination kinetic measurements, and oxygen binding measurements on alphaY42A show that the intersubunit interactions formed by Tyr42alpha have only a modest influence on the structural properties and ligand affinity of the deoxyhemoglobin tetramer. Therefore, the alpha1beta2 interface interactions associated with Tyr42alpha do not contribute significantly to the quaternary constraints that are responsible for the low oxygen affinity of deoxyhemoglobin. The slight increase in the ligand affinity of deoxy alphaY42A correlates with small, mutation-induced structural changes that perturb the environment of Trp37beta, a critical region of the quaternary-T alpha1beta2 interface that has been shown to be the major source of quaternary constraint in deoxyhemoglobin.  相似文献   

12.
The rate of reaction between alpha-amino groups and cyanic acid was followed at 26 degrees and ionic strength 0.2 M as a function of pH of human hemoglobin Ao solutions to determine the pK and the pH-independent second order rate constant, kappa, for these groups in the alpha and beta chains. At a given point in time, the extent of the reaction was determined by employing the Beckmann Sequencer as a quantitative tool in which the yields of leucine and histidine in the second Edman degradation cycle were used to define the rates of reaction of the alpha and beta chains, respectively. From these results, the individual were evaluated (Garner, M.H., Garner, W.H., and Gurd, F. R.N. (1973) J. Biol. Chem. 248, 5451-5455). Values for pK for the alpha and beta chains were, respectively, 6.74 and 6.93 for cyanoferrihemoglobin, 6.95 and 7.05 for carboxyhemoglobin, and 7.79 and 6.84 for deoxyhemoglobin. Values for kappa, M- minus 1 S-minus 1, for the alpha and beta chains were, respectively, 12.5 and 17 for cyanoferrihemoglobin, 12 and 18 for carboxyhemoglobin, and 91 and 24 for deoxyhemoglobin. Limits of significance were estimated for both variables in each case. The pK results for valine 1alpha agree well with the value obtained by Hill and Davis (1967) J. Biol. Chem. 242, 2005-2012) for carboxyhemoglobin and with that of Kilmartin and Rossi-Bernardi ((1971) Biochem. J. 124, 31-45) for deoxyhemoglobin. Values obtained for sperm whale myoglobin were 7.77 for pK and 7.4 for kappa. The results are useful for the interpretation of the allosteric interactions of hemoglobin with hydrogen ions, with CO2, and with phosphate.  相似文献   

13.
The formation of deoxyhemoglobin was examined by measuring the heme spectral change that accompanies the aggregation of isolated alpha and beta chains. At low hemeconcentrations (less than 10(-5) M), tetramer formation can be described by two consecutive, second order reactions representing the aggregation of monomers followed by the association of alphabeta dimers. At neutral pH, the rates of monomer and dimer aggregation are roughly the same, approximately 5 X 10(5) M(-1) X(-1) at 20 degrees. Raising or lowering the pH results in a uniform decrease of both aggregation rates due presumably to repulsion of positively charged subunits at acid pH and repulsion of negatively charged subunits at alkaline pH. Addition of p-hydroxymercuribenzoate to alpha chains lowers the rate of monomer aggregation whereas addition of mercurials to the beta subunits appears to lower both the rate of monomer and the rate of dimer aggregation. At high heme concentrations (greater than 10(-5) M) or in the presence of organic phosphates, the rate of chain aggregation becomes limited, in part, by the slow dissociation of beta chain tetramers. In the case of inositol hexaphosphate, the rate of hemoglobin formation exhibits a bell-shaped dependence on phosphate concentration. When intermediate concentrations of inositol hexaphosphate (approximately 10(-4 M) are preincubated with beta subunits, a slow first order time course is observed and exhibits a half-time of about 8 min. As more inositol hexaphosphate is added, the chain aggregation reaction begins to occur more rapidly. Eventually at about 10(-2) M inositol hexaphospate, the time course becomes almost identical to that observed in the absence of phosphates. The increase in the velocity of the chain aggregation reaction at high phosphate concentrations suggests strongly that inositol hexaphosphate binds to beta monomers and, if added in sufficiently large amounts, promotes beta4 dissociation. A quantitative analysis of these results showed that the affinity of beta monomers for inositol hexaphosphate is the same as that of alphabeta dimers. Only when tetramers are formed, either alpha2beta2 or beta4, is a marked increase in affinity for inositol hexaphosphate observed.  相似文献   

14.
Yeh E  Cole LJ  Barr EW  Bollinger JM  Ballou DP  Walsh CT 《Biochemistry》2006,45(25):7904-7912
The flavin-dependent halogenase RebH catalyzes chlorination at the C7 position of tryptophan as the initial step in the biosynthesis of the chemotherapeutic agent rebeccamycin. The reaction requires reduced FADH(2) (provided by a partner flavin reductase), chloride ion, and oxygen as cosubstrates. Given the similarity of its sequence to those of flavoprotein monooxygenases and their common cosubstrate requirements, the reaction of FADH(2) and O(2) in the halogenase active site was presumed to form the typical FAD(C4a)-OOH intermediate observed in monooxygenase reactions. By using stopped-flow spectroscopy, formation of a FAD(C4a)-OOH intermediate was detected during the RebH reaction. This intermediate decayed to yield a FAD(C4a)-OH intermediate. The order of addition of FADH(2) and O(2) was critical for accumulation of the FAD(C4a)-OOH intermediate and for subsequent product formation, indicating that conformational dynamics may be important for protection of labile intermediates formed during the reaction. Formation of flavin intermediates did not require tryptophan, nor were their rates of formation affected by the presence of tryptophan, suggesting that tryptophan likely does not react directly with any flavin intermediates. Furthermore, although final oxidation to FAD occurred with a rate constant of 0.12 s(-)(1), quenched-flow kinetic data showed that the rate constant for 7-chlorotryptophan formation was 0.05 s(-)(1) at 25 degrees C. The kinetic analysis establishes that substrate chlorination occurs after completion of flavin redox reactions. These findings are consistent with a mechanism whereby hypochlorite is generated in the RebH active site from the reaction of FADH(2), chloride ion, and O(2).  相似文献   

15.
Under physiological conditions of pH (7.4) and chloride concentration (0.15 M), the oxygen affinity of bovine hemoglobin is substantially lower than that of human hemoglobin. Also, the Bohr effect is much more pronounced in bovine hemoglobin. Numerical simulations indicate that both phenomena can be explained by a larger preferential binding of chloride ions to deoxyhemoglobin in the bovine system. Also, they show that the larger preferential binding may be produced by a decreased affinity of the anions for oxyhemoglobin, thereby stressing the potential relevance of the oxy conformation in regulating the functional properties of the protein. The conformation of the amino-terminal end of the beta subunits appears to regulate the interaction of hemoglobin with solvent components. The pronounced sensitivity of the oxygen affinity of bovine hemoglobin to chloride concentration and to pH suggests that in bovine species these are the modulators of oxygen transport in vivo.  相似文献   

16.
Hemolysate from white stork displayed a single hemoglobin component, thus resulting into two bands and two globin peaks in dissociating PAGE and reversed phase-HPLC, respectively. Stripped hemoglobin showed an oxygen affinity higher than that of human HbA, a small Bohr effect, and a cooperative oxygen binding. A small decrease of oxygen affinity, of the same extent in all the pH range examined, was observed by addition of chloride, thus indicating an unusual chloride-independent Bohr effect (DeltalogP50/Deltalog pH=-0.24). Saturating amounts of inositol hexakisphosphate, largely decreased hemoglobin-oxygen affinity (DeltalogP(50)=1.17 at pH 7.0), and increased the extent of its Bohr effect (DeltalogP50/DeltalogpH=-0.45). The phosphate binding curve allowed to measure a very high overall binding constant (K=1.18 x 10(5) M(-1)). The effect of temperature on the oxygen affinity was measured, and the enthalpy change of oxygenation resulted almost independent on pH. Structural-functional relationships are discussed by considering some amino acid residues situated at alpha1/beta1 and alpha1/beta2 interfaces, such as alpha38 and alpha89 positions. The presence of only one hemoglobin component, a rare event among birds, and its functional properties have been related to the physiological oxygen requirements of this soaring migrant bird and to its technique of flight during migration.  相似文献   

17.
The association of 2,3-diphosphoglycerate with oxy- and deoxyhemoglobin was studied by means of ultrafiltration and microcalorimetry. It was found that in addition to parameters that are known to influence the binding of 2,3-diphosphoglycerate to both species of hemoglobin (such as pH, temperature and concentration of competing anion), the association is also strongly dependent on the hemoglobin concentration. The difference between the apparent association constants for the formation of the complex of the organic phosphate with oxy- and deoxyhemoglobin is relatively small. At pH 7.3, 25° C and 0.154 M chloride this difference is only 0.6 kcal/mole of free energy favoring the Hb·DPG complex. This free energy difference increases with decreasing pH but is not strongly affected by hemoglobin concentration. The enthalpy change for the formation of the 2,3-diphosphoglycerate complex with deoxyhemoglobin is 8–10 kcal/mole more exothermic than the complex with oxyhemoglobin.  相似文献   

18.
The binding of carbon dioxide to human hemoglobin cross-linked between Lys alpha 99 residues with bis(3,5-di-bromosalicyl) fumarate was measured using manometric techniques. The binding of CO2 to unmodified hemoglobin can be described by two classes of sites with high and low affinities corresponding to the amino-terminal valines of the beta and alpha chains, respectively (Perrella, M., Kilmartin, J. V., Fogg, J., and Rossi-Bernardi, L. (1975b) Nature 256, 759-761. The cross-linked hemoglobin bound less CO2 than native hemoglobin at all CO2 concentrations in deoxygenated and liganded conformations, and the ligand-linked effect was reduced. Fitting the data to models of CO2 binding suggests that only half of the expected saturation with CO2 is possible. The remaining binding is described by a single affinity constant that for cross-linked deoxyhemoglobin is about two-thirds of the high affinity constant for deoxyhemoglobin A and that for cross-linked cyanomethemoglobin is equal to the high affinity constant for unmodified cyanomethemoglobin A or carbonmonoxyhemoglobin A. The low affinity binding constant for cross-linked hemoglobin in both the deoxygenated and liganded conformations is close to zero, which is significantly less than the affinity constants for either subunit binding site in unmodified hemoglobin. Comparing the low affinity sites in this modified hemoglobin to native hemoglobin suggests that cross-linking hemoglobin between Lys alpha 99 residues prevents CO2 binding at the alpha-subunit NH2 termini.  相似文献   

19.
The mutations in hemoglobin Nancy beta145(HC2) Tyr leads to Asp and hemoglobin Cochin-Portal-Royal beta146(HC3) His leads to Arg involve residues which are thought to be essential for the full expression of allosteric action in hemoglobin. Relative to the structure of deoxyhemoglobin A, our x-ray study of deoxyhemoglobin Nancy shows severe disordering of the beta chain COOH-terminal tetrapeptide and a possible movement of the beta heme iron atom toward the plane of the porphyrin ring. These structural perturbations result in a high oxygen affinity, reduced Bohr effect, and lack of cooperatively in hemoglobin Nancy. In the presence of inositol hexaphosphate (IHP), the Hill constant for hemoglobin Nancy increases from 1.1 to 2.0. But relative to its action on hemoglobin A, IHP is much less effective in reducing the oxygen affinity and in increasing the Bohr effect of hemoglobin Nancy. This indicates that IHP does not influence the R in equilibrium T equilibrium as much in hemoglobin Nancy as in hemoglobin A, and this probably is due to the disordering of His 143beta which is known to be part of the IHP binding site. IHP is also known to produce large changes in the absorption spectrum of methemoglobin A, but we find that it has no effect on the spectrum of methemoglobin Nancy. In contrast to the large structural changes in deoxyhemoglobin Nancy, the structure of deoxyhemoglobin Cochin-Port-Royal differs from deoxyhemoglobin A only in the position of the side chain of residue 146beta. The intrasubunit salt bridge between His 146beta and Asp 94beta in deoxyhemoglobin A is lost in deoxyhemoglobin Cochin-Portal-Royal with the guanidinium ion of Arg 146beta floating freely in solution. This small difference in structure results in a reduced Bohr effect, but does not cause a change in the Hill coefficient, the response to 2,3-diphosphoglycerate, or the oxygen affinity at physiological pH.  相似文献   

20.
C H Tsai  T J Shen  N T Ho  C Ho 《Biochemistry》1999,38(27):8751-8761
Using our Escherichia coli expression system, we have produced five mutant recombinant (r) hemoglobins (Hbs): r Hb (alpha V96 W), r Hb Presbyterian (beta N108K), r Hb Yoshizuka (beta N108D), r Hb (alpha V96W, beta N108K), and r Hb (alpha V96W, beta N108D). These r Hbs allow us to investigate the effect on the structure-function relationship of Hb of replacing beta 108Asn by either a positively charged Lys or a negatively charged Asp as well as the effect of replacing alpha 96Val by a bulky, nonpolar Trp. We have conducted oxygen-binding studies to investigate the effect of several allosteric effectors on the oxygenation properties and the Bohr effects of these r Hbs. The oxygen affinity of these mutants is lower than that of human normal adult hemoglobin (Hb A) under various experimental conditions. The oxygen affinity of r Hb Yoshizuka is insensitive to changes in chloride concentration, whereas the oxygen affinity of r Hb Presbyterian exhibits a pronounced chloride effect. r Hb Presbyterian has the largest Bohr effect, followed by Hb A, r Hb (alpha V96W), and r Hb Yoshizuka. Thus, the amino acid substitution in the central cavity that increases the net positive charge enhances the Bohr effect. Proton nuclear magnetic resonance studies demonstrate that these r Hbs can switch from the R quaternary structure to the T quaternary structure without changing their ligation states upon the addition of an allosteric effector, inositol hexaphosphate, and/or by reducing the temperature. r Hb (alpha V96W, beta N108K), which has the lowest oxygen affinity among the hemoglobins studied, has the greatest tendency to switch to the T quaternary structure. The following conclusions can be derived from our results: First, if we can stabilize the deoxy (T) quaternary structure of a hemoglobin molecule without perturbing its oxy (R) quaternary structure, we will have a hemoglobin with low oxygen affinity and high cooperativity. Second, an alteration of the charge distribution by amino acid substitutions in the alpha 1 beta 1 subunit interface and in the central cavity of the hemoglobin molecule can influence the Bohr effect. Third, an amino acid substitution in the alpha 1 beta 1 subunit interface can affect both the oxygen affinity and cooperativity of the oxygenation process. There is communication between the alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces during the oxygenation process. Fourth, there is considerable cooperativity in the oxygenation process in the T-state of the hemoglobin molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号