首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poor protein solubility is a common problem in high-resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all 20 amino acids to protein solubility has not been done. Here, 20 variants at the completely solvent-exposed position 76 of ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II beta-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine.  相似文献   

2.
Recently, it has become possible to reprogram the protein synthesis machinery such that numerous noncanonical amino acids can be translated into target sequences yielding tailor-made proteins. The canonical amino acid tryptophan (Trp) encoded by a single nucleotide triplet (UGG) is a particularly interesting target for protein engineering and design. Trp-residues can be substituted with a variety of analogs and surrogates generated biosynthetically or by organic chemistry. Among them, nitrogen-containing tryptophan analogs occupy a central position, as they have distinct chemical properties in comparison with aliphatic amines and imines. They resemble purine bases of DNA and share their capacity for pH-sensitive intramolecular charge transfer. These special properties of the analogs can be directly transmitted into related protein structures via in vivo ribosome-mediated translation. Proteins expressed in this way are further endowed with unique properties like new spectral, altered redox and titration features or might serve as useful biomaterials. We present and discuss current works and future developments in protein engineering with nitrogen-containing tryptophan analogs and related compounds as well as their relevance for academic and applicative research.The term noncanonical amino acid refers to an amino acid that does not belong, in contrast to a canonical amino acid, to the genetically encoded, proteinogenic amino acids. The term analog defines a strict isosteric exchange of a canonical/noncanonical amino acid (e.g., tryptophan/azatryptophan), while the term surrogate defines a nonisosteric change (e.g., tryptophan/azulene). Mutant denotes a protein in which the wild-type sequence was changed by site-directed mutagenesis (codon manipulation on the DNA level) within the repertoire of the standard amino acids. Variant denotes a protein in which one or more canonical amino acids derived from a wild-type or a mutant sequence were replaced by a noncanonical one (expanded amino acid repertoire, codon reassignment on the protein translation level).  相似文献   

3.
The ability to alter protein structure by site-directed mutagenesis has revolutionized biochemical research. Controlled mutations at the DNA level, before protein translation, are now routine. These techniques allow specific, high fidelity interconversion largely between 20 natural, proteinogenic amino acids. Nonetheless, there is a need to incorporate other amino acids, both natural and unnatural, that are not accessible using standard site-directed mutagenesis and expression systems. Post-translational chemistry offers access to these side chains. Nearly half a century ago, the idea of a 'chemical mutation' was proposed and the interconversion between amino acid side chains was demonstrated on select proteins. In these isolated examples, a powerful proof-of-concept was demonstrated. Here, we revive the idea of chemical mutagenesis and discuss the prospect of its general application in protein science. In particular, we consider amino acids that are chemical precursors to a functional set of other side chains. Among these, dehydroalanine has much potential. There are multiple methods available for dehydroalanine incorporation into proteins and this residue is an acceptor for a variety of nucleophiles. When used in conjunction with standard genetic techniques, chemical mutagenesis may allow access to natural, modified, and unnatural amino residues on translated, folded proteins.  相似文献   

4.
Cys-29 and Cys-251 of Streptomyces albus valine dehydrogenase (ValDH) were highly conserved in the corresponding region of NAD(P)(+)-dependent amino acid dehydroganase sequences. To ascertain the functional role of these cysteine residues in S. albus ValDH, site-directed mutagenesis was performed to change each of the two residues to serine. Kinetic analyses of the enzymes mutated at Cys-29 and Cys-251 revealed that these residues are involved in catalysis. We also constructed mutant ValDH by substituting valine for leucine at 305 by site-directed mutagenesis. This residue was chosen, because it has been proposed to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). Kinetic analysis of the V305L mutant enzyme revealed that it is involved in the substrate binding site. However it displayed less activity than the wild type enzyme toward all aliphatic and aromatic amino acids tested.  相似文献   

5.
The type I regulatory subunit (R-I) of rat brain cAMP-dependent protein kinase was expressed in E. coli and site-directed mutagenesis was used to substitute amino acids in the putative cAMP-binding sites. The wild-type recombinant R-I bound 2 mol of cAMP/mol subunit, while two mutant R-Is with a single amino acid substitution in one of the two intrachain cAMP-binding sites (clone N153:a glutamate for Gly-200, and clone C254:an aspartate for Gly-324) bound 1 mol of cAMP/mol subunit. When these two substitutions were made in one mutant, cAMP did not bind to this mutant, indicating that binding of cAMP to N153 or C254 was to their nonmutated sites. Competition experiments with site-selective analogs and dissociation of bound cAMP from mutant R-Is provided evidence for strong intrachain interactions between the two classes of cAMP-binding sites in R-I.  相似文献   

6.
Unnatural amino acids as probes of protein structure and function   总被引:5,自引:0,他引:5  
Nonsense suppression methodology, for incorporating unnatural amino acids into proteins, has enabled a wide range of studies into protein structure and function using both in vitro and in vivo translation systems. Although methodological challenges remain, scores of unnatural amino acids have been employed that include both subtle and dramatic variants of the natural set. A number of insights that would not have been possible using conventional site-directed mutagenesis have been gained.  相似文献   

7.
The precursor of cytochrome P-450(SCC) (preP-450(SCC], an inner membrane protein of adrenal cortex mitochondria, has an extension peptide consisting of 39 amino acids which is thought to play an essential role in the import of the precursor into mitochondria. The amino terminal portion of the extension peptide contains three positively charged amino acid residues, Arg(4), Arg(9), and Lys(14). To investigate their role in the import of preP-450(SCC) into mitochondria, they were replaced by other amino acids, Ser or Thr, by site-directed mutagenesis. The import of mutated preP-450(SCC)s with single amino acid substitution was much less efficient than with the original precursor. The mutated preP-450(SCC)s with two or three substitutions were not imported. These results suggest that the positively charged amino acid residues in the amino terminal portion of the extension peptide are essential for the import of preP-450(SCC) into mitochondria.  相似文献   

8.
Anthranilate synthase is a glutamine amidotransferase that catalyzes the first reaction in tryptophan biosynthesis. Conserved amino acid residues likely to be essential for glutamine-dependent activity were identified by alignment of the glutamine amide transfer domains in four different enzymes: anthranilate synthase component II (AS II), p-aminobenzoate synthase component II, GMP synthetase, and carbamoyl-P synthetase. Conserved amino acids were mainly localized in three clusters. A single conserved histidine, AS II His-170, was replaced by tyrosine using site-directed mutagenesis. Glutamine-dependent enzyme activity was undetectable in the Tyr-170 mutant, whereas the NH3-dependent activity was unchanged. Affinity labeling of AS II active site Cys-84 by 6-diazo-5-oxonorleucine was used to distinguish whether His-170 has a role in formation or in breakdown of the covalent glutaminyl-Cys-84 intermediate. The data favor the interpretation that His-170 functions as a general base to promote glutaminylation of Cys-84. Reversion analysis was consistent with a proposed role of His-170 in catalysis as opposed to a structural function. These experiments demonstrate the application of combining sequence analyses to identify conserved, possibly functional amino acids, site-directed mutagenesis to replace candidate amino acids, and protein chemistry for analysis of mutationally altered proteins, a regimen that can provide new insights into enzyme function.  相似文献   

9.
The availability of amino acids in the brain is regulated by the blood-brain barrier (BBB) large neutral amino acid transporter type 1 (LAT1) isoform, which is characterized by a high affinity (low Km) for substrate large neutral amino acids. The hypothesis that brain amino acid transport activity can be altered with single nucleotide polymorphisms was tested in the present studies with site-directed mutagenesis of the BBB LAT1. The rabbit has a high Km LAT1 large neutral amino acid transporter, as compared to the low Km neutral amino acid transporter at the human or rat BBB. The rabbit LAT1 was cloned from a rabbit brain capillary cDNA library. Alignment of the amino acid sequences of rabbit, human, and rat LAT1 revealed two radical amino acid residues that differ in the rabbit relative to the rat or human LAT1. The G219D mutation had a modest effect on the Km and Vmax of tryptophan transport via cloned rabbit LAT1 in frog oocytes, but the W234L variant reduced the Km by 64% and the Vmax by 96%. Conversely, LAT1 transport of either tryptophan or phenylalanine was nearly normalized when the double mutation W234L/G219D variant was produced. These studies show that marked changes in the affinity and capacity of the LAT1 are caused by single nucleotide polymorphisms and that phenotype can be restored with a double mutation.  相似文献   

10.
C. Liu  X. Mao    A. J. Lustig 《Genetics》1994,138(4):1025-1040
Alleles specifically defective in telomeric silencing were generated by in vitro mutagenesis of the yeast RAP1 gene. The most severe phenotypes occur with three mutations in the C-terminal 28 amino acids. Two of the alleles are nonsense mutations resulting in truncated repressor/activator protein 1 (RAP1) species lacking the C-terminal 25-28 amino acids; the third allele is a missense mutation within this region. These alleles define a novel 28-amino acid region, termed the C-terminal tail domain, that is essential for telomeric and HML silencing. Using site-directed mutagenesis, an 8-amino acid region (amino acids 818-825) that is essential for telomeric silencing has been localized within this domain. Further characterization of these alleles has indicated that the C-terminal tail domain also plays a role in telomere size control. The function of the C-terminal tail in telomere maintenance is not mediated through the RAP1 interacting factor RIF1: rap1 alleles defective in both the C-terminal tail and RIF1 interaction domains have additive effects on telomere length. Overproduction of SIR3, a dose-dependent enhancer of telomeric silencing, suppresses the telomeric silencing, but not length, phenotypes of a subset of C-terminal tail alleles. In contrast, an allele that truncates the terminal 28 amino acids of RAP1 is refractory to SIR3 overproduction. These results indicate that the C-terminal tail domain is required for SIR3-dependent enhancement of telomeric silencing. These data also suggest a distinct set of C-terminal requirements for telomere size control and telomeric silencing.  相似文献   

11.
We observed previously that the carboxyl-terminal region of the third loop of the TSH receptor (amino acid residues 617-625) is important in signal transduction. To analyze this region in more detail, in the present study we used site-directed mutagenesis to substitute, on an individual basis, the seven amino acids previously mutated as a group. These amino acids are either charged residues or potential phosphorylation sites. Six of the mutant TSH receptors with individual amino acid substitutions bound TSH with high affinity and displayed a cAMP response to TSH stimulation similar to the wild-type TSH receptor. The mutant receptor TSH-R-Gly625 (Arg----Gly) did not transduce a signal, but these results are noninformative because of the loss of high affinity TSH binding. The present data indicate that for each of the six informative amino acid substitutions, the individual residues are not critical for signal transduction. A corollary of this conclusion is that in the important carboxyl-terminal region of the third cytoplasmic loop of the TSH receptor multiple amino acid residues function as a unit.  相似文献   

12.
Site-directed mutagenesis in the Escherichia coli recA gene   总被引:1,自引:0,他引:1  
C Cazaux  F Larminat  M Defais 《Biochimie》1991,73(2-3):281-284
Escherichia coli RecA protein plays a fundamental role in genetic recombination and in regulation and expression of the SOS response. We have constructed 6 mutants in the recA gene by site-directed mutagenesis, 5 of which were located in the vicinity of the recA430 mutation responsible for a coprotease deficient phenotype and one which was at the Tyr 264 site. We have analysed the capacity of these mutants to accomplish recombination and to express SOS functions. Our results suggest that the region including amino acid 204 and at least 7 amino acids downstream interacts not only with LexA protein but also with ATP. In addition, the mutation at Tyr 264 shows that this amino acid is essential for RecA activities in vivo, probably because of its involvement in an ATP binding site, as previously shown in vitro.  相似文献   

13.
Novel methods of incorporating non-native amino acids and stable isotope labels into proteins using modified tRNAs present new opportunities for basic research and biotechnology that go beyond conventional site-directed mutagenesis. tRNA-mediated protein engineering relies on the development of novel tRNAs and their misacylation with custom-designed amino acids, the recognition of special codons by the tRNAs, and the efficient expression of these modified proteins. Recent progress has been made in all these areas, including the development of more effective suppresor tRNAs and higher yield translation systems, leading to a variety of novel applications.  相似文献   

14.
Masada S  Terasaka K  Mizukami H 《FEBS letters》2007,581(14):2605-2610
Curcumin glucosyltransferase (CaUGT2) isolated from cell cultures of Catharanthus roseus exhibits unique substrate specificity. To identify amino acids involved in substrate recognition and catalytic activity of CaUGT2, a combination of domain swapping and site-directed mutagenesis was carried out. Exchange of the PSPG-box of CaUGT2 with that of NtGT1b (a phenolic glucosyltransferase from tobacco) led to complete loss of enzyme activity in the resulting recombinant protein. However, replacement of Arg378 of the NtGT1b PSPG-box with cysteine, the corresponding amino acid in CaUGT2, restored the catalytic activity of the chimeric enzyme. Further site-directed mutagenesis revealed that the size of the amino acid side-chain in that particular site is critical to the catalytic activity of CaUGT2.  相似文献   

15.
Phorbol ester-inducible mouse 8S-lipoxygenase (8-LOX) and its human homologue, 15S-lipoxygenase-2 (15-LOX-2), share 78% identity in amino acid sequences, yet there is no overlap in their positional specificities. In this study, we investigated the determinants of positional specificity using a random chimeragenesis approach in combination with site-directed mutagenesis. Exchange of the C-terminal one-third of the 8-LOX with the corresponding portion of 15-LOX-2 yielded a chimeric enzyme with exclusively 15S-lipoxygenase activity. The critical region was narrowed down to a cluster of five amino acids by expression of multiple cDNAs obtained by in situ chimeragenesis in Escherichia coli. Finally, a pair of amino acids, Tyr(603) and His(604), was identified as the positional determinant by site-directed mutagenesis. Mutation of both of these amino acids to the corresponding amino acids in 15-LOX-2 (Asp and Val, respectively) converted the positional specificity from 8S to 90% 15S without yielding any other by-products. Mutation of the corresponding residues in 15-LOX-2 to the 8-LOX sequence changed specificity to 50% oxygenation at C-8 for one amino acid substitution and 70% at C-8 for the double mutant. Based on the crystal structure of the reticulocyte 15-LOX, these two amino acids lie opposite the open coordination position of the catalytic iron in a likely site for substrate binding. The change from 8 to 15 specificity entails a switch in the head to tail binding of substrate. Enzymes that react with substrate "head first" (5-LOX and 8-LOX) have a bulky aromatic amino acid and a histidine in these positions, whereas lipoxygenases that accept substrates "tail first" (12-LOX and 15-LOX) have an aliphatic residue with a glutamine or aspartate. Thus, this positional determinant of the 8-LOX and 15-LOX-2 may have significance for other lipoxygenases.  相似文献   

16.
Endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) has a high level of transglycosylation activity. To determine which amino acids are involved in this activity, we employed deletion analysis, as well as random and site-directed mutagenesis. Using PCR random mutagenesis, 11 mutants with greatly decreased levels of enzyme activity were isolated. Six catalytically essential amino acids were identified by site-directed mutagenesis. Mutants E173G, E175Q, D206G, and D270N had markedly reduced hydrolysis activity, while mutants V109D, E173D, and E173Q lost all enzymatic activity, indicating that Val-109 and Glu-173 are important for the catalytic function. Moreover, we isolated a random mutation that abolished the transglycosylation activity without affecting the hydrolysis activity. The Trp-216 to Arg mutation was identified, by site-directed mutagenesis, as that responsible for the loss of transglycosylation activity. While other mutants of Trp-216 showed reduced activity, mutation to another positively charged residue (Lys) also abolished the transglycosylation activity. Sequence comparison with two other endo-beta-N-acetylglucosaminidases, that possess transglycosylation activity and that have been cloned recently, reveals a high degree of identity in the N-terminal regions of the three enzymes. These results indicate that the tryptophan residue at position 216 of Endo-A has a key role in the transglycosylation.  相似文献   

17.
A cyclodextrin glucanotransferase (CGTase) from Bacillus clarkii 7364 converts starch into gamma-cyclodextrin (gamma-CD) with high specificity. Comparison of the deduced amino acid sequence of this CGTase with those of other typical CGTases revealed that several amino acids are deleted or substituted with others at several subsites. Of these amino acids, Ala223 at subsite +2 and Gly255 at subsite +3 in the acceptor site of the enzyme were replaced by several amino acids through site-directed mutagenesis. The replacement of Ala223 by lysine, arginine and histidine strongly enhanced the gamma-CD-forming activity in the neutral pH range. On the other hand, all mutants obtained on replacing Gly255 with the above amino acids showed significant decreases in the gamma-CD-forming activity. Taking into account both the kinetic parameters and pKa values of the side chains of the three basic amino acids, the protonation state of the amino groups in their side chains at subsite +2 seems to enhance the hydrogen bonding interaction between these basic amino acids and the glucose residues of linear oligosaccharides. The enhancement of the interaction may play an important role by helping the substrate reach subsite +1, hence increasing the gamma-CD-forming activity and kcat value.  相似文献   

18.
Fasick JI  Applebury ML  Oprian DD 《Biochemistry》2002,41(21):6860-6865
The wild-type mouse ultraviolet (UV) and bovine blue cone visual pigments have absorption maxima of 358 and 438 nm, respectively, while sharing 87% amino acid identity. To determine the molecular basis underlying the 80 nm spectral shift between these pigments, we selected several amino acids in helices II and III for site-directed mutagenesis. These amino acids included: (1) those that differ between mouse UV and bovine blue; (2) the conserved counterion, Glu113; and (3) Ser90, which is involved in wavelength modulation in avian short-wavelength sensitive cone pigments. These studies resulted in the identification of a single amino acid substitution at position 86 responsible for the majority of the spectral shift between the mouse UV and bovine blue cone pigments. This is the first time that this amino acid by itself has been shown to play a major role in the spectral tuning of the SWS1 cone pigments. A single amino acid substitution appears to be the dominant factor by which the majority of mammalian short-wavelength sensitive cone pigments have shifted their absorption maxima from the UV to the visible regions of the spectrum. Studies investigating the role of the conserved counterion Glu113 suggest that the bovine and mouse SWS1 pigments result from a protonated and unprotonated Schiff base chromophore, respectively.  相似文献   

19.
Beta-breakers: an aperiodic secondary structure   总被引:1,自引:0,他引:1  
We have studied the architecture of parallel beta-sheets in proteins and focused on the residues that initiate and terminate the beta-strands. These beta-breaker residues are at the origin of the kink between the beta-strand and the turn that precedes or follows it. beta-Breakers can be located automatically using a consensus approach based on algorithmic secondary structure assignment, solvent accessibility and backbone dihedral angles. These beta-breakers are conformationally homogeneous with respect to side-chain solvent accessibility and backbone dihedral angle profile. A sequence-structure correlation is noted: a restricted subset of amino acids is observed at these positions. Analysis of homologous protein sequences shows that these residues are more highly conserved than other residues in the loop. We conclude that beta-breakers are the structural analogs of the N and C-terminal caps of alpha-helices. The identification of this aperiodic substructure suggests a strategy for improving secondary structure prediction and may guide site-directed mutagenesis experiments.  相似文献   

20.
Lantibiotics are post-translationally modified antimicrobial peptides which are active at nanomolar concentrations. Some lantibiotics have been shown to function by targeting lipid II, the essential precursor of cell wall biosynthesis. Given that lantibiotics are ribosomally synthesized and amenable to site-directed mutagenesis, they have the potential to serve as biological templates for the production of novel peptides with improved functionalities. However, if a rational approach to novel lantibiotic design is to be adopted, an appreciation of the roles of each individual amino acid (and each domain) is required. To date no lantibiotic has been subjected to such rigorous analysis. To address this issue we have carried out complete scanning mutagenesis of each of the 59 amino acids in lacticin 3147, a two-component lantibiotic which acts through the synergistic activity of the peptides LtnA1 (30 amino acids) and LtnA2 (29 amino acids). All mutations were performed in situ in the native 60 kb plasmid, pMRC01. A number of mutations resulted in the elimination of detectable bioactivity and seem to represent an invariable core within these and related peptides. Significantly however, of the 59 amino acids, at least 36 can be changed without resulting in a complete loss of activity. Many of these are clustered to form variable domains within the peptides. The information generated in this study represents a blue-print that will be critical for the rational design of lantibiotic-based antimicrobial compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号