首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of γ-glutamyl transpeptidase, the key enzyme of the γ-glutamyl cycle and of thiols for the uptake of amino acids into rat pancreatic islets was investigated. Both serine–borate, an inhibitor of γ-glutamy transpeptidase, and serine which does not inhibit this enzyme, but probabaly is a competitive inhibitor of amino acid uptake, inhibited of glutamine. The inhibitory effect of serine-borate was not greater than that of serine alone. The uptake of glutamine was not affected by either GSH (reduced glutathione) or diamide (a thiol oxidant). Niether substances affected the uptake of leucine. The results indicate that the uptake of glutamine by rat pancreatic islets is not dependent on the functioning of γ-glutamyl transpeptidase and that thiols are not important for the uptake of the amino acids glutamine and leucine.  相似文献   

2.
gamma-Glutamyl transpeptidase activity was detected in rat ascites tumor cells (LY-5) suspended in Hanks' balanced saline solution using L-gamma-glutamyl-p-nitroanilide as a substrate. Whole-cell suspension of the tumor cells exhibited full activity of the enzyme without detectable cell disruption under the conditions examined. Various amino acids, transported through specific membrane carriers, did not affect the accessibility of substrate for the enzyme. An inhibitor of sodium-dependent transport systems of amino acids caused no significant change in the rate of enzyme catalysis. Like glutathione or S-methylglutathione, S-acetyldextran (mol. wt 215000) derivative of glutathione, which is believed to be unable to penetrate into intact cells, caused marked inhibition of the rate of p-nitroaniline release from the synthetic substrate by the tumor cells. These data indicated that the active site of the enzyme faced to the outer surface of the cells. gamma-Glutamyl transpeptidase of the tumor cells was successfully affinity-labeled by 6-diazo-5-oxo-L-norleucine, a glutamine analog, without causing detectable change in the viability of the cells under the conditions examined. The rate of transport of alanine, leucine, glycine and glutamine into cells was not affected by the inactivation of this enzyme with the affinity label. Thus, the activity of gamma-glutamyl transpeptidase located on the outer surface of tumor cell membrane does not seem to be requisite for the transport process of amino acids.  相似文献   

3.
The γ-glutamyl cycle has been proposed by Meister (1973) as one possible mechanism for the mediation of amino acid transport. The high energy requirement of the pathway, the very low specificity of γ-glutamyl transpeptidase and the inability to account for trans membrane stimulation of amino acid entry are but three criticisms of this hypothesis. It is proposed that the various objections can be overcome by postulating that the soluble form of γ-glutamyl transpeptidase transfers the γ-glutamyl moiety from gluthathione to glutamine (in the case of brain) and that the membrane sequestered form of this enzyme catalyzes the exchange of the γ-glutamyl group between γ-glutamyl glutamine and an entering neutral amino acid. The released glutamine leaves the cell. The γ-glutamyl amino acid then passes into the cytoplasm where it is acted upon by either γ-glutamyl cyclotransferase or the soluble γ-glutamyl transpeptidase which transfers the γ-glutamyl group to another molecule of glutamine. It is postulated that access to the membrane-bound enzyme is dependent on the relative lipophilia of the entering large-neutral amino acids. The available data support this mechanism. By regeneration of γ-glutamyl glutamine, a low expenditure of energy is required for the transport process. Specificity of transpeptidation is attained by the constraints of access to the membrane bound enzyme site.  相似文献   

4.
Rat kidney γ-glutamyl transpeptidase was found to be inactivated by phenylmethanesulfonyl fluoride, a specific inactivator of serine enzymes. The inactivation occurred only in the presence of maleate which was known to enhance the hydrolytic activity of this enzyme. The concentration of phenylmethanesulfonyl fluoride giving a half maximum rate of inactivation was 1.1 mM. The presence of S-methyl glutathione, a substrate for this enzyme, prevented the inactivation in a competitive fashion. These findings indicate that phenylmethanesulfonyl fluoride acts as an active site directed reagent for γ-glutamyl transpeptidase. A possible identity of the labeled site with that for 6-diazo-5-oxo-L-norleucine, another affinity label for this enzyme, was discussed.  相似文献   

5.
When intravenously administered to rats, [U-14C]glycine-labelled GSSG, GSH and its analogue ophthalmic acid were rapidly removed from the blood. In perfusion studies with isolated liver, however, the compounds did not enter the liver tissue. Thus, uptake by this tissue is obviously not responsible for the removal of γ-glutamyl tripeptides from the blood. Instead, rapid hydrolysis of the tripeptides was observed. The undegraded tripeptides were only detected in the blood immediately after administration. Within tissue the degradation product glycine accounted for all the radioactivity. After intravenous injection of the labelled tripeptides the radioactivity accumulated first in the kidney, as shown by autoradiographic studies and chemical analysis of different tissues. The hydrolysis of the γ-glutamyl tripeptides decreased markedly after the renal arteries were clamped. These observations strongly suggest that renal tissue is the principal site of the degradation of the tripeptides. Inhibition studies and experiments with isolated renal tubules revealed that γ-glutamyl transpeptidase catalyses the fast hydrolysis of the extracellular peptides. The results indicate that, when entering the extracellular space, glutathione and its analogues are completely hydrolysed and must be resynthesized after reuptake of the constituent amino acids. It is concluded that the degradation occurs mainly on the luminal surface of the renal brush-border membrane and that γ-glutamyl transpeptidase is a glutathionase acting on extracellular glutathione.  相似文献   

6.
Initial rates of glutamine uptake were studied in human lymphoid cell lines whose γ-glutamyl transpeptidase activities vary from 93 to 11,300 units/mg. In general, glutamine was transported at lower rates than other amino acids (met, phe, leu) in all cell lines studied. A cell line with very high transpeptidase activity exhibited an increased rate of glutamine uptake as compared to other amino acids, and a markedly decreased intracellular concentration of glutamine. In all cell lines transported glutamine was extensively (80%) converted to glutamate. Treatment of cells with 6-diazo-5-oxo-L-norleucine (DON) decreased transpeptidase and conversion of transported glutamine to glutamate by about 80%. Inhibition of glutamine transport was less pronounced (0–20%). The findings indicate that transported glutamine does not equilibrate with glutamine in the intracellular pool, but may enter a separate pool in which it is rapidly converted to glutamate.  相似文献   

7.
S S Tate  M W Dunn  A Meister 《Life sciences》1976,18(10):1145-1148
The activities of γ-glutamyl transpeptidase and other enzymes of the γ-glutamyl cycle, a series of reactions that catalyzes the synthesis and utilization of glutathione, were studied in the rabbit retina. Histochemical studies demonstrated that γ-glutamyl transpeptidase is localized in the visual receptor cells and the retinal pigment epithelium. Rat and mouse retinas revealed similar localizations of transpeptidase. These findings are in accord with the view that γ-glutamyl transpeptidase is involved in the transport of amino acids between the retinal pigment epithelium and the avascular visual receptor cells.  相似文献   

8.
The uptake of a number of amino acids and dipeptides by cells and spheroplasts of Bacteroides melaninogenicus was stimulated by the presence of glutamine; 50 mM glutamine induced maximum uptake of glycine or alanine, and glutamine stimulated the uptake of glycine over a wide concentration range (0.17 to 170 mM). Glutamine stimulated the uptake of the dipeptides glycylleucine and glycylproline at significantly faster rates compared with glycine and leucine. The amino acids whose uptake was stimulated by glutamine were incorporated into trichloroacetic acid-precipitable material, and the inclusion of chloramphenicol or puromycin did not affect this incorporation. The uptake of glutamine by cells was concentration dependent. In contrast, in the absence of chloramphenicol 79% of the glutamine taken up by cells supplied with a high external concentration (4.4 mM) was trichloroacetic acid soluble. Glutamate and alpha-ketoglutarate were identified in the intracellular pool of glutamine-incubated spheroplasts. The amino acids and peptides were incorporated into cell envelope material, and a portion (30 to 50%) of the incorporated amino acids could be removed by trypsinization or treatment with papain. The effect of glutamine was depressed by inhibitors of energy metabolism, suggesting that glutamine-stimulated incorporation is an energy-mediated effect.  相似文献   

9.
The metabolism in vivo of gamma-glutamyl amino acids and peptides was studied in the mouse after administration of loading doses of L-gamma-glutamyl-2-aminobutyrate and several other gamma-glutamyl compounds, including glutathione. A great and rapid accumulation of glutamate, glutamine, aspartate and pyrrolidone carboxylate was observed in the kidney. Similarly, after administration of a tracer dose of L-gamma-[14C]glutamyl-L-2-aminobutyrate a rapid incorporation of label into kidney glutamate, glutamine and aspartate was found. These results suggest that both the hydrolytic and gamma-glutamyl transfer reactions catalyzed by gamma-glutamyl transpeptidase are active in the renal handling of gamma-glutamyl compounds. Indirect evidence was obtained that L-gamma-glutamyl-2-aminobutyrate is partially taken up by the kidney cell in an intact form. In contrast to the kidney, administration of several gamma-glutamyl derivatives did not cause an increase in liver glutamate, glutamine and pyrrolidone carboxylate. After administration of L-gamma-glutamyl-2-aminobutyrate only a slight increase in liver aspartate and pyrrolidone carboxylate was observed. Experiments with L-gamma-[14C]glutamyl-L-2-aminobutyrate suggest that this derivative is largely first degraded to its component amino acids (probably in the kidney) before entering into the metabolism of the liver cell. gamma-Glutamyl transpeptidase may function in the metabolism and transport of glutathione and other gamma-glutamyl compounds in a manner analogous to the function of dipeptidases and disaccharidases in the metabolism and transport of dipeptides and disaccharides respectively.  相似文献   

10.
Glutamate, the principal excitatory neurotransmitter of the brain, participates in a multitude of physiologic and pathologic processes, including learning and memory. Glutathione, a tripeptide composed of the amino acids glutamate, cysteine, and glycine, serves important cofactor roles in antioxidant defense and drug detoxification, but glutathione deficits occur in multiple neuropsychiatric disorders. Glutathione synthesis and metabolism are governed by a cycle of enzymes, the γ-glutamyl cycle, which can achieve intracellular glutathione concentrations of 1–10 mM. Because of the considerable quantity of brain glutathione and its rapid turnover, we hypothesized that glutathione may serve as a reservoir of neural glutamate. We quantified glutamate in HT22 hippocampal neurons, PC12 cells and primary cortical neurons after treatment with molecular inhibitors targeting three different enzymes of the glutathione metabolic cycle. Inhibiting 5-oxoprolinase and γ-glutamyl transferase, enzymes that liberate glutamate from glutathione, leads to decreases in glutamate. In contrast, inhibition of γ-glutamyl cysteine ligase, which uses glutamate to synthesize glutathione, results in substantial glutamate accumulation. Increased glutamate levels following inhibition of glutathione synthesis temporally precede later effects upon oxidative stress.  相似文献   

11.
Glutathione synthetase deficiency results in decreased cellular glutathione content and consequent overproduction of 5-oxoproline. L-serine in borate buffer inhibits γ-glutamyl transpeptidase, the major catabolic enzyme for glutathione. Treatment of glutathione synthetase deficient fibroblasts with 40mM serine and borate for 24 hours produced more than a 2-fold increase in cellular glutathione content. L-serine alone led to a smaller increase in glutathione level, and borate alone was without effect. On exposure to serine and borate, 5-oxoproline formation from L-glutamate was decreased to normal levels in glutathione synthetase deficient fibroblasts, presumably secondary to feedback inhibition of γ-glutamylcysteine synthetase by the increased intracellular glutathione concentration. Cellular free amino acid content was generally unaffected by such exposure although increases were observed in serine and phosphoserine. This model system suggests that γ-glutamyl transpeptidase inhibition may be a rational approach to alleviating the effects of glutathione synthetase deficiency.  相似文献   

12.
Glutathione labeled in each of its amino acid residues, the corresponding free amino acids, and gamma-glutamyl-amino acids were used to evaluate their renal basolateral transport and metabolism at physiological levels of glutathione. Recovery of label in the venous outflow was compared to that of co-administered inulin after a single-pass in vivo infusion of rat kidney. Metabolites of glutathione and of its constituent amino acids were determined. No net basolateral transport of glutathione was detected; instead there was extensive breakdown of glutathione by the actions of basolateral gamma-glutamyl transpeptidase and dipeptidase. Glutamate and 5-oxoproline showed net basolateral uptake. Recoveries of 35S greater than those of inulin were found after perfusion of [35S]cysteine and [35S]glutathione suggesting rapid net tubular reabsorption of cyst(e)ine. Recovery of label from perfused [U-14C]glycine was equivalent to that of inulin consistent with little or no net flux. Co-administration of large amounts of unlabeled metabolites together with the labeled glutathiones led to label recoveries closer to those of inulin, consistent with competitive inhibition of labeled metabolite transport. Treatment of rats with an inhibitor of gamma-glutamyl transpeptidase decreased basolateral glutathione metabolism and thus indirectly decreased transport of labeled metabolites. No net basolateral transport of gamma-glutamyl-amino acids was detected. Significant amounts of label perfused as [Glu-U-14C]glutathione appeared in the gamma-glutamyl-amino acid fraction of the renal venous outflows, providing direct evidence that glutathione is used in vivo for the formation of gamma-glutamyl-amino acids.  相似文献   

13.
The mechanism of the stimulatory effect of glutathione on proteolysis in mouse kidney lysosomes and a lack of an effect in lysomes from the liver was investigated. The stimulation in kidney lysosomes was inhibited by serine plus borate, a reversible inhibitor of γ-glutamyl transpeptidase. Treatment of mouse kidney lysosome suspensions with l-(αS,5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin), an irreversible inhibitor of the transpeptidase, also inhibited the effect of glutathione, but this inhibition was completely relieved by washing and addition of freshly prepated kidney membranes or purified γ-glutamyl transpeptidase to the incubation mixtures. Cysteinyl-glycine, a product of the action of γ-glutamyl transpeptidase, stimulated proteolysis in acivicin-inhibited kidney lysosome preparations similarly to glutathione, and cysteine had no effect at equivalent concentrations. Glutathione also stimulated proteolysis in liver lysosomes in the presence of washed kidney membranes or γ-glutamyl transpeptidase, but the effect was similar to that produced by equivalent concentrations of cysteine. These results suggest that the stimulatory effect of glutathione was mediated by the action of γ-glutamyl transpeptidase present in contaminating cell membrane fragments in the lysosome preparations, and that glutathione does not take part in intralysosomal proteolysis. However, the possibility that cysteinyl-glycine is a physiological intralysosomal disulfide reductant in kidney lysosomes has not been excluded.  相似文献   

14.
Most of the γ-glutamyl transpeptidase (γ-GTP) activity of actively feeding third instar housefly larvae is located on the brush border of the proximal half of the Malpighian tubules and the brush border of epithelial cells of the anterior and posterior portions of the midgut. It is concluded that these membranes are the major sites of synthesis of the dipeptide, γ-l-glutamyl-l-phenyl-alanine (γ-glu-phe).In effect, γ-GTP and γ-glu-phe form a highly specific system for the absorption and reabsorption of phenylalanine from the lumen of the midgut and Malpighian tubules. Thus, membrane-bound γ-GTP combines with phenylalanine and glutathione and the resulting γ-glu-phe is translocated across the cell membrane and released within the cell. The dipeptide then enters the blood, presumably by simple diffusion in response to the concentration gradient generated by its build-up within the cell. It accumulates in the blood during larval growth and finally is consumed upon the onset of puparium tanning.Puparium formation was accompanied by an abrupt, ecdysone-induced appearance of intense γ-GTP activity on the epidermal cell membrane at the epidermis-cuticle interface. Epidermal cell γ-GTP activity was maximal 1 to 2 hr after puparium formation, after which time it began to diminish rapidly. It became virtually undectectable by the larval-pupal apolysis. Functionally, this hormonally induced new γ-GTP may catalyse reaction(s) which result in a rapid liberation of phenylalanine from γ-glu-phe for its subsequent conversion to tyrosine and quinones for tanning the puparium.The possibility that γ-GTP may also function in the transport of other amino acids in the housefly and in other insect genera is considered in terms of the Orlowski-Meister concept of a ‘γ-glutamyl cycle’.  相似文献   

15.
本文应用动力学分析观察了棉酚对大鼠肾脏γ-谷氨酰转肽酶(γ-GT)的抑制作用。实验结果证实了棉酚在体外是大鼠肾脏γ-GT的抑制剂,而且抑制常数远小于r-GT的天然抑制剂——马尿酸。在不同浓度的棉酚作用下,改变双底物浓度,测定其活力并应用Lineweaver-Burk双倒数作图法,测得棉酚在两种底物情况下,对γ-GT的抑制作用均呈非竞争性抑制。  相似文献   

16.
Ungerminated pumpkin (Cucurbita moschata Poir.) cotyledons contained 30 % of their dry weight as lipid and 26 % as protein, of which 93 % was globulin. There was a rapid degradation of these reserves 4 to 8 days after planting when the cotyledons had their maximum metabolic activity. About half of the mole percent of amino acids found in the globulin reserve was in arginine, glutamate, aspartate, and their amides. The cotyledons had a large soluble pool of arginine, glutamine, glutamate, and leucine. Most amino acids increased steadily in amount in the cotyledons during germination, except glutamine, ornithine, alanine, serine, glycine, and γ-aminobutyrate and these appeared in large amounts in the translocation stream to the axis tissue. Little arginine or proline was translocated. By 10 days, when translocation had decreased, amino acids accumulated. Ornithine, γ-aminobutyrate, and aspartate were rapidly utilized in the hypocotyl, while glutamine, glycine, and alanine accumulated there. Cysteine and methionine levels were low in the reserve, trans-location stream and soluble fractions. γ-Aminobutyrate-U?14C injected into cotyledons or incubated with hypocotyls was utilized in a similar fashion. The label appeared in citric acid cycle acids and in the amino acids closely related to this cycle, but the bulk of the label appeared in CO2. The labeling pattern suggests that γ-aminobutyrate was utilized via succinate, and thus entered the citric acid cycle. A close relationship between arginine, ornithine, glutamate, and γ-aminobutyrate exists in the cotyledon with all but arginine being translocated rapidly to the axis tissue where these amino acids are rapidly metabolized.  相似文献   

17.
Abstract: The present work relates to the possibility that the ATP-independent enzyme γ-glutamyl transpeptidase (EC 2.3.2.2), which has been postulated to be part of an amino acid uptake system, is active during cerebral ischemia. This was evaluated in the ischemic rat striatum by determination of intra- and extracellular concentrations of γ-glutamyl dipeptides (the products of the transpeptidation) and glutathione (the physiological γ-glutamyl donor). An ischemic period (0–30 and 31–60 min) resulted in prominent increases in the respective concentration of extracellular γ-glutamylglutamate (24- and 67-fold), γ-glutamyltaurine + γ-glutamylglycine (5.8- and 19-fold), and γ-glutamylglutamine (2.6- and 6.8-fold) as revealed using in vivo microdialysis. The changes coincided with increased respective extracellular concentrations of glutamate (83- and 115-fold), taurine (17- and 25-fold), glycine (4.6- and 6.1-fold), and glutamine (1.7- and 2.1-fold). Furthermore, under anoxic conditions in vitro (0–30 and 0–60 min), respective striatal tissue concentrations were increased for γ-glutamylglutamate (20- and 17-fold), γ-glutamyltaurine (6.7- and 11-fold), γ-glutamylglutamine (1.7- and 1.2-fold), and γ-glutamylglycine (14- and 18-fold), whereas glutathione levels were, on an average, decreased by ∼350 µ M . In summary, γ-glutamyl transpeptidase is involved in de novo dipeptide synthesis in the mammalian brain during anoxic conditions, indicating transport of amino acids such as glutamate.  相似文献   

18.
—The metabolism of free amino acids: γ-aminobutyric acid (GABA), glutamine, glycine and glutathione has been studied. The labelling of these free amino acids in normal and in myelin-deficient brains of Jimpy mice was followed after intraperitoneal injection of 14C-labelled glucose precursor. The quantitative distribution of these amino acids in the two kinds of mouse brain has been compared. A higher level of GABA and a faster labelling of the amino acids in Jimpy than in normal mouse brain was observed.  相似文献   

19.
Abstract— γ-Glutamyl transpeptidase from bovine choroid plexus has been shown to be a membrane-bound enzyme. Partial purification of the enzyme has been accomplished using detergent extraction and ammonium sulfate fractionation. Important determinants of enzymatic activity with acceptor substrates included chain length, stereoisomerism, and amino acid composition of the acceptors. L-Methionine was the best amino acid substrate and its corresponding peptides L-methionylmethionine and L-methionyl-L-serine were also good γ-glutamyl acceptors. L-Alanine and glycine were poor acceptor substrates; whereas, some peptides containing these amino acids were excellent substrates. Glycylglycine was significantly more effective as a γ-glutamyl acceptor than glycine, triglycine, or tetraglycine. L-Alanylglycine was a superior acceptor to glycine, L-alanine, or L-alanylglycylglycine, while the D-isomer of alanylglycine was only minimally effective as an acceptor substrate. In general glycyl peptides were the best acceptor substrates examined. Our findings that γ-glutamyl transpeptidase could catalyze the transfer of γ-glutamyl groups to glycylglycyl-L-alanine and L-alanylglycylglycine are of special interest, since few examples of tripeptide acceptors for the enzyme have been found. It is suggested that γ-glutamyl transpeptidase might play a role in the inactivation and/or transport of biologically active peptides.  相似文献   

20.
Post-uptake metabolism affects quantification of amino acid uptake   总被引:1,自引:0,他引:1  
? The quantitative significance of amino acids to plant nutrition remains controversial. This experiment determined whether post-uptake metabolism and root to shoot export differ between glycine and glutamine, and examined implications for estimation of amino acid uptake. ? Field soil containing a Eucalyptus pauciflora seedling was injected with uniformly (13)C- and (15)N-labelled glycine or glutamine. I quantified (15)N and (13)C excess in leaves and roots and intact labelled amino acids in leaves, roots and stem xylem sap. A tunable diode laser quantified fluxes of (12)CO(2) and (13)CO(2) from leaves and soil. ? 60-360 min after addition of amino acid, intact molecules of U-(13)C,(15)N glutamine were < 5% of (15)N excess in roots, whereas U-(13)C,(15)N glycine was 30-100% of (15)N excess in roots. Intact molecules of glutamine, but not glycine, were exported from roots to shoots. ? Post-uptake metabolism and transport complicate interpretation of isotope labelling such that root and shoot contents of intact amino acid, (13)C and (15)N may not reflect rates of uptake. Future experiments should focus on reconciling discrepancies between intact amino acid, (13)C and (15)N by determining the turnover of amino acids within roots. Alternatively, post-uptake metabolism and transport could be minimized by harvesting plants within minutes of isotope addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号