共查询到20条相似文献,搜索用时 8 毫秒
1.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1982,710(2):143-153
A phospholipid transfer protein has been purified 125-fold from maize seedlings. The successive steps of purification comprised gel filtration on Sephadex G-75, DEAE- and CM-chromatography and chromatofocusing. The homogeneity of the protein was determined by polyacrylamide gel electrophoresis with and without SDS and by isoelectric focusing. The protein has an apparent molecular weight of 20000, as estimated from SDS electrophoresis, and an isoelectric point of 8.8 ± 0.2. The amino acid composition of the protein is characterized by a high content of alanine, glycine, cysteine and serine and a small amount of lysine. A molecular weight of 14058 was calculated from this amino acid composition. The protein only loses 25% of its activity after 5 min heating at 95°C. The purified protein is able to transfer phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine between liposomes and mitochondria at the rates of, respectively, 100, 56 and 1.6. After incubation of the purified protein with [3H]phosphatidylcholine, a labelled phosphatidylcholine-protein complex was obtained after chromatofocusing. This suggests that the protein acts by carrying phosphatidylcholine from a membrane toward another one. 相似文献
2.
3.
Dong Hae Shin Kwang Yeon Hwang Kyeong Kyu Kim Sangsoo Kim Robert M. Sweet Se Won Suh 《Proteins》1994,19(1):80-83
Phospholipid transfer protein from maize seedlings has been crystallized using trisodium citrate as precipitant. The crystal belongs to the orthorhombic space group P212121 with unit cell dimensions of a = 24.46 Å, b = 49.97 Å, and c = 69.99 Å. The presence of one molecule in the asymmetric unit gives a crystal volume per protein mass (Vm) of 2.36 Å 3/Da and a solvent content of 48% by volume. The X-ray diffraction pattern extends at least to 1.6 Å Bragg spacing when exposed to both CuKα and synchrotron X-rays. A set of X-ray data to approximately 1.9 Å Bragg spacing has been collected from a native crystal. © 1994 Wiley-Liss, Inc. 相似文献
4.
《Plant science》1986,45(3):151-156
Specific antibodies raised against phospholipid transfer protein from maize seeds, react with mitochondria or microsomes solubilized by sodium deoxycholate. A single precipitin line was observed with both types of solubilized membranes when the double immunodiffusion technique was used. When the solubilized membranes were separated by fast-protein liquid chromatography (FPLC) on a reverse phase column, prior to the immunodiffusion, only fractions co-migrating with the pure phospholipid transfer protein, reacted with the antibody. Alternatively, solubilized membranes were submitted to sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by immunoblotting; the detection of antigen-antibody complexes by a peroxydase reagent revealed the presence of a band co-migrating with the pure protein. All these observations strongly suggest that phospholipid transfer proteins are membrane-bound. The physiological significance of this finding will be discussed. 相似文献
5.
Sarah Siggins Christian Ehnholm Matti Jauhiainen Vesa M Olkkonen 《Biochimie et biologie cellulaire》2006,84(2):117-125
Phospholipid transfer protein (PLTP) is a serum glycoprotein with a central role in high-density lipoprotein metabolism. We created a fusion protein in which enhanced green fluorescent protein (EGFP) was fused to the carboxyl-terminus of PLTP. Stably transfected HepG2 cells, which overexpress this fusion protein, were generated. PLTP-EGFP was translocated into the ER and fluoresced within the biosynthetic pathway, showing a marked concentration in the Golgi complex. The transfected cells secreted into the growth medium phospholipid transfer activity 7-fold higher than that of the mock-transfected controls. The medium of the PLTP-EGFP - expressing cells displayed EGFP fluorescence, demonstrating that both the PLTP and the EGFP moieties had attained a biologically active conformation. However, the specific activity of PLTP-EGFP in the medium was markedly reduced as compared with that of endogenous PLTP. This suggests that the EGFP attached to the carboxyl-terminal tail of PLTP interferes with the interaction of PLTP with its substrates or with the lipid transfer process itself. Fluorescently tagged PLTP is a useful tool for elucidating the intracellular functions of PLTP and the interaction of exogenously added PLTP with cells, and will provide a means of monitoring the distribution of exogenously added PLTP between serum lipoprotein subspecies. 相似文献
6.
To better understand the mechanism of lipid transfer protein (LTP) action and the effects of altered lipoprotein composition on its activity, we evaluated the dependence of LTP activity on the concentrations of cholesteryl ester (CE) and/or triglyceride (TG) in the phospholipid bilayer of substrate particles. Phosphatidylcholine (PC)-cholesterol liposomes containing up to 2 mole% TG and/or CE were prepared by cholate dialysis and used as either the donor of lipids to, or the acceptor of lipids from, low density lipoproteins (LDL). CE or TG transfer from liposomes of varying neutral lipid content to LDL showed saturation kinetics with an apparent Km of less than or equal to 0.2 mole%. Throughout this concentration-dependent response. PC transfer, which depended on the same LTP-donor particle binding interactions as those required for neutral lipid transfer, was essentially unchanged. Lipid transfer in the reverse direction (from LDL to liposomes of varying neutral lipid content) followed the same kinetics showing that transfer between the two particles is tightly coupled and bidirectional. When liposomes contained both TG and CE, these lipids competed for transfer in a manner analogous to that previously noted with lipoprotein substrates. In conclusion, CE and TG transfer activities are determined by the concentration of these lipids in the phospholipid surface of donor and acceptor particles. At low TG and CE concentrations, LTP bound to the liposome surface as indicated by PC transfer, but only a portion of these interactions actually facilitated a neutral lipid transfer event. Thus, the overall rate of neutral lipid transfer, and the competition between TG and CE for transfer, depend on the concentrations of these lipids in the phospholipid layer. 相似文献
7.
Rosenthal EA Ronald J Rothstein J Rajagopalan R Ranchalis J Wolfbauer G Albers JJ Brunzell JD Motulsky AG Rieder MJ Nickerson DA Wijsman EM Jarvik GP 《Journal of lipid research》2011,52(10):1837-1846
Phospholipid transfer protein activity (PLTPa) is associated with insulin levels and has been implicated in atherosclerotic disease in both mice and humans. Variation at the PLTP structural locus on chromosome 20 explains some, but not all, heritable variation in PLTPa. In order to detect quantitative trait loci (QTLs) elsewhere in the genome that affect PLTPa, we performed both oligogenic and single QTL linkage analysis on four large families (n = 227 with phenotype, n = 330 with genotype, n = 462 total), ascertained for familial combined hyperlipidemia. We detected evidence of linkage between PLTPa and chromosome 19p (lod = 3.2) for a single family and chromosome 2q (lod = 2.8) for all families. Inclusion of additional marker and exome sequence data in the analysis refined the linkage signal on chromosome 19 and implicated coding variation in LASS4, a gene regulated by leptin that is involved in ceramide synthesis. Association between PLTPa and LASS4 variation was replicated in the other three families (P = 0.02), adjusting for pedigree structure. To our knowledge, this is the first example for which exome data was used in families to identify a complex QTL that is not the structural locus. 相似文献
8.
Although plant non-specific lipid transfer proteins (ns-LTPs) are characterized by their ability to bind and transfer a broad range of hydrophobic ligands in vitro, their biological functions in vivo remain unclear. Recently, it has been proposed that ns-LTPs may play a key role in plant defense mechanisms, particularly during the induction of systemic acquired resistance, however, very little is known about the regulation in this process. We report that the binding of maize non-specific lipid transfer protein (Zm-LTP) to calmodulin (CaM) is in a calcium-independent manner. To better understand the interaction mechanism between Zm-LTP and CaM, the CaM-binding site of Zm-LTP was mapped to the region of amino acids 46-60. Point mutations indicate that four amino acid residues, R46, R47, K54 and R58, in this region are crucial for binding. Furthermore, we tested the effects of CaM on the lipid-binding activity of Zm-LTP in the presence of Ca(2+), EGTA, N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide and trifluoperazine respectively. We also investigated the structural features of CaM-binding motifs in LTPs from different species and strong differences were observed. Taken together, our results suggest that the interaction with CaM could be a common feature of plant LTPs. The identification and characterization of CaM-binding domain of LTPs should provide new insights into the mechanism by which the physiological functions of LTPs are regulated. 相似文献
9.
The transfer of phospholipid molecules between biological and synthetic membranes is facilitated by the presence of soluble catalytic proteins, such as those isolated from bovine brain which interacts with phosphatidylinositol and phosphatidylcholine and from bovine liver which is specific for phosphatidylcholine. A series of tertiary amine local anesthetics decreases the rates of protein-catalyzed phospholipid transfer. The potency of inhibition is dibucaine>tetracaine>lidocaine>procaine, an order which is compared with and identical to those for a wide variety of anesthetic-dependent membrane phenomena. Half-maximal inhibition of phosphatidylinositol transfer by dibucaine occurs at a concentration of 0.18 mM, significantly lower than the concentration of 1.9 mM required for half-maximal inhibition of phosphatidylcholine transfer activity of the brain protein. Comparable inhibition of liver protein phosphatidylcholine transfer activity is observed at 1.6 mM dibucaine. For activity measurements performed at different pH, dibucaine is more potent at the lower pH values which favor the equilibrium toward the charged molecular species. With membranes containing increasing molar proportions of phosphatidate, dibucaine is increasingly more potent. No effect of Ca2+ on the control transfer activity or the inhibitory action of dibucaine is noted. These results are discussed in terms of the formation of specific phosphatidylinositol or phosphatidylcholine complexes with the amphiphilic anesthetics in the membrane bilayer. 相似文献
10.
Ca2+-dependent protein kinase (CDPK-1) was purified from maize seedlings, and its substrate specificity studied using a set of synthetic peptides derived from the phosphorylatable sequence RVLSRLHS15VRER of maize sucrose synthase 2. The decapeptide LARLHSVRER was found to be efficiently phosphorylated as a minimal substrate. The same set of peptides were found to be phosphorylated by mammalian protein kinase Cbeta (PKC), but showed low reactivity with protein kinase A (PKA). Proceeding from the sequence LARLHSVRER, a series of cellulose-membrane-attached peptides of systematically modified structure was synthesised. These peptides had hydrophobic (Ala, Leu) and ionic (Arg, Glu) amino acids substituted in each position. The phosphorylation of these substrates by CDPK-1 was measured and the substrate specificity of the maize protein kinase characterised by the consensus sequence motif A/L-5X-4R-3X-2X-1SX+1R+2Z+3R+4, where X denotes a position with no strict amino acid requirements and Z a position strictly not tolerating arginine compared with the other three varied amino acids. This motif had a characteristic sequence element RZR at positions +2 to +4 and closely resembled the primary structure of the sucrose synthase phosphorylation site. The sequence surrounding the phosphorylatable serine in this consensus motif was similar to the analogous sequence K/RXXS/TXK/R proposed for mammalian PKC, but different from the consensus motif RRXS/TX for PKA. 相似文献
11.
J Szczegielniak A Liwosz I Jurkowski M Loog G Dobrowolska P Ek A C Harmon G Muszyńska 《European journal of biochemistry》2000,267(12):3818-3827
A calcium- and phospholipid-dependent protein kinase of apparent molecular mass 54 kDa (designated ZmCPKp54) was partially purified from etiolated maize seedlings. Activity of ZmCPKp54 is stimulated by phosphatidylserine and phosphatidylinositol, but is not essentially affected by diolein and phorbol esters. The enzyme cross-reacts with polyclonal antibodies against the calmodulin like-domain of the calcium-dependent protein kinase, but not with antibodies against catalytic or regulatory domains of protein kinase C. ZmCPKp54 is not able to phosphorylate the specific substrates of protein kinase C (MARCKS peptide and protein kinase C substrate peptide derived from pseudosubstrate sequence) and its activity is not inhibited by specific PKC inhibitors (bisindolylmaleimide, protein kinase C pseudosubstrate inhibitory peptide). The substrate specificity and sensitivity to the inhibitors of the maize enzyme resembles calcium-dependent protein kinase. The biochemical and immunological properties indicate that ZmCPKp54 belongs to the calcium-dependent protein kinase family. 相似文献
12.
We report here the complete synthesis of the spin-labeled derivative of an antitumor ether phospholipid, 1-O-octadecyl-2-O-(4'-doxylpentyl)-rac-glycerol-3-phosphocholine. This also represents the first time that the synthesis of a nitroxide spin-labeled diether phospholipid is described. In vitro experiments showed that at micromolar concentrations, this new analog is readily incorporated into the plasma membranes of human HL60 and mouse E8/AK.D1 leukemic cells, and subsequently kills the cells. The availability of this new probe should permit the electron spin resonance spectroscopic approach to investigate ways by which anti-tumor ether phospholipids selectively destroy the tumor cells. 相似文献
13.
Plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism. PLTP is an 80-kDa glycoprotein that is expressed/secreted by a wide variety of tissues including lung, liver, adipose tissue, brain, and muscle. PLTP mediates a net transfer of phospholipids between vesicles and plasma HDLs. It also generates from small HDL particles large fused HDL particles with a concomitant formation of small lipid-poor apolipoprotein (apo) A-I-containing particles which are thought to act as the primary acceptors of cell-derived cholesterol from peripheral tissue macrophages. Another important function of PLTP is connected to lipolysis. Its role in the transfer of surface remnants from triglyceride-rich particles, very-low-density lipoproteins, and chylomicrons, to HDL is of importance for the maintenance of HDL levels. Recent observations from our laboratory have demonstrated that in circulation two forms of PLTP are present, one catalytically active (high-activity form, HA-PLTP) and the other a low-activity form (LA-PLTP). In view of the likely relevancy of PLTP in human health and disease, reliable and accurate methods for measuring plasma/serum PLTP activity and concentration are required. In this chapter, two radiometric PLTP activity assays are described: (i) exogenous, lipoprotein-independent phospholipid transfer assay and (ii) endogenous, lipoprotein-dependent phospholipid transfer assay. In addition, an ELISA method for quantitation of serum/plasma total PLTP mass as well as HA-PLTP and LA-PLTP mass is reported in detail. 相似文献
14.
Incubation of placental brush border membrane (BBM) along with sonicated vesicles of exogenous lipids (egg yolk PC) in the presence of phospholipid-transfer protein (PL-TP) showed a decrease in the alkaline phosphatase activity due to the change in the membrane micro-environment, such as fluidity. Effect of substrate concentration was tested by Lineweaver-Burk plot, which showed decreased V(max) and K(M). The effect of temperature was probed by the Arrhenius plot, which showed no change in transition temperature, but a decline in the energy of activation both below and above the transition temperature. The protein-catalyzed transfer of phospholipid from the donor unilamellar vesicles resulted in a substantial increase in the BBM phospholipid and a net decrease in cholesterol/phospholipid molar ratio. The change in membrane fluidity was assessed by translational as well as rotational diffusion of membrane extrinsic fluorescent probes, pyrene and diphenyl-hexatriene. An increased lateral mobility was recorded by the increased pyrene excimer formation. A decrease in fluorescent polarization of diphenyl-hexatriene was observed, which led to the decrease in fluorescence anisotropy and order parameter, and therefore, an increase in membrane fluidity (rotational diffusion). Mean anisotropy parameter was also decreased in the presence of PL-TP. Thus, the placental BBM alkaline phosphatase activity showed a distinct lipid dependence which may have important physiological consequences. 相似文献
15.
16.
Trojanek JB Klimecka MM Fraser A Dobrowolska G Muszyńska G 《Acta biochimica Polonica》2004,51(3):635-647
A protein kinase of 57 kDa, able to phosphorylate tyrosine in synthetic substrates pol(Glu4,Tyr1) and a fragment of Src tyrosine kinase, was isolated and partly purified from maize seedlings (Zea mays). The protein kinase was able to phosphorylate exogenous proteins: enolase, caseins, histones and myelin basic protein. Amino acid analysis of phosphorylated casein and enolase, as well as of phosphorylated endogenous proteins, showed that both Tyr and Ser residues were phosphorylated. Phosphotyrosine was also immunodetected in the 57 kDa protein fraction. In the protein fraction there are present 57 kDa protein kinase and enolase. This co-purification suggests that enolase can be an endogenous substrate of the kinase. The two proteins could be resolved by two-dimensional electrophoresis. Specific inhibitors of typical protein-tyrosine kinases had essentially no effect on the activity of the maize enzyme. Staurosporine, a nonspecific inhibitor of protein kinases, effectively inhibited the 57 kDa protein kinase. Also, poly L-lysine and heparin inhibited tyrosine phosphorylation by 57 kDa maize protein kinase. The substrate and inhibitor specificities of the 57 kDa maize protein kinase phosphorylating tyrosine indicate that it is a novel plant dual-specificity protein kinase. 相似文献
17.
Phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids among lipoproteins. Over half of the PLTP in human plasma has been found to have little phospholipid transfer activity (inactive PLTP). We recently observed that plasma PLTP specific activity is inversely correlated with high-density lipoprotein (HDL) level and particle size in healthy adults. The purpose of this study was to evaluate the factors that contribute to the variation in plasma PLTP specific activity. Analysis of the specific activity of PLTP complexes in nine plasma samples from healthy adults revealed two clusters of inactive PLTP complexes with mean molecular weights (MW) of 342kDa and 146kDa. The large and small inactive PLTP complexes represented 52±8% (range 39-63%) and 8±8% (range 1-28%) of the plasma PLTP, respectively. Active PLTP complexes had a mean MW of 207kDa and constituted 40±6% (range 33-50%) of the plasma PLTP. The specific activity of active PLTP varied from 16 to 32μmol/μg/h. These data demonstrate for the first time the existence of small inactive plasma PLTP complexes. Variation in the amount of the two clusters of inactive PLTP complexes and the specific activity of the active PLTP contribute to the variation in plasma PLTP specific activity. 相似文献
18.
19.
A method for studing the binging of ligands absorbing the light in the region of 350-550 nm to protein is described. The method is based on resonance energy transfer between the fluorescent label covalently bound to the protein and the ligand. The isoindole label, a product of the reaction of the protein with o-phthalaldehyde in the presence of 2-mercaptoethanol, was used as a fluorescent donor. The method was used to determine the binding parameters of a fluorescent probe (a naphthalimide derivative) with human serum albumin. A comparison of the results obtained by the resonance energy and transfer by equilibrium dialysis showed a high accuracy of the resonance energy transfer method. 相似文献
20.