首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured characteristics of evoked potentials, EPs, developing after presentation of significant tonal acoustic stimuli in subjects systematically engaged in music training (n = 7) and those having no corresponding experience (n = 10). The peak latencies of the P3 component in the left hemisphere of musicians were significantly shorter than those in non-musicians (on average, 279.9 and 310.2 msec, respectively). Musicians demonstrated no interhemisphere differences of the latencies of components N2, P3, and N3, while a trend toward asymmetry was obvious in non-musicians (the above components were generated somewhat later in the left hemisphere). The amplitudes of EP components demonstrated no significant intergroup differences, but the amplitude of the P3 wave was higher in the left hemisphere of non-musicians than that in the right hemisphere. Possible neurophysiological correlates of the observed specificity of EPs in the examined groups are discussed.  相似文献   

2.
The relationship between 5 positive components of somatosensory evoked potentials (EPs) and subjective response to electrical stimuli, which were recorded in the same human subjects, was assessed in the present study. Five levels of tactile stimuli and 6 levels of noxious stimuli were applied to the tip of the right index finger. The relationship between the magnitude of subjective response and stimulus intensity was well expressed by a power function. Of 5 major positive components in an EP, P30 and P50 were localized at contralateral primary somatic projection area, while P90, P190 and P270 were at the vertex area. The amplitude of the 5 components systematically increased as increasing stimulus intensity, and also increased with the magnitude of subjective response. A significant correlation between the amplitude of P30 or P50 and stimulus intensity was found when the effect of subjective response was partially out. By contrast, the amplitudes of P190 and P270 were associated with subjective response when the effect of stimulus intensity was partially out. These results suggest that the earlier EP components reflect sensory signal processing, while the latter ones concern the subjective evaluating system.  相似文献   

3.
Cerebral evoked potentials (EPs) in response to painful stimuli have been recorded since the 1970s. Based on the apparent relationship of the response amplitude to intensity of stimulation, these potentials are conventionally interpreted as reflecting the sensory-discriminative aspects of pain. As such, pain-EPs provide an objective measure for sensation of pain. An alternative interpretation regards the pain-EP as comprised of at least two overlapping components, one pain-specific, the other, a P300 wave. In the case of pain, the P300 may reflect the degree of discomfort or unpleasantness, thus reflecting the emotional-motivational aspect. To establish the nature of the pain-EP, mini doses of a benzodiazepine, counterbalanced with placebo, were given to 6 normal volunteers. Benzodiazepines decrease anxiety, and so diminish the emotional response to pain, but they have no analgesic effect. In all subjects, pain perception was unchanged, while the EP wave was almost completely obliterated. We conclude that the pain-EP reflects the emotional-motivational response to pain rather than the sensory-discriminative. Thus, it provides a useful neurophysiological tool for studying the emotions associated with pain.  相似文献   

4.
Previous studies have shown that early posterior components of event-related potentials (ERPs) are modulated by facial expressions. The goal of the current study was to investigate individual differences in the recognition of facial expressions by examining the relationship between ERP components and the discrimination of facial expressions. Pictures of 3 facial expressions (angry, happy, and neutral) were presented to 36 young adults during ERP recording. Participants were asked to respond with a button press as soon as they recognized the expression depicted. A multiple regression analysis, where ERP components were set as predictor variables, assessed hits and reaction times in response to the facial expressions as dependent variables. The N170 amplitudes significantly predicted for accuracy of angry and happy expressions, and the N170 latencies were predictive for accuracy of neutral expressions. The P2 amplitudes significantly predicted reaction time. The P2 latencies significantly predicted reaction times only for neutral faces. These results suggest that individual differences in the recognition of facial expressions emerge from early components in visual processing.  相似文献   

5.
Modification of the viscerosensory evoked potentials (EPs) were studied during the sleep-wakefulness cycle of the rat. Electrical stimuli of various intensity were delivered either to the mucosal surface of a fistula of the small intestine or to the left splanchnic nerve during wakefulness (W), drowsiness (D), slow-wave-sleep (SWS), and paradoxical sleep (PS). The average EPs were recorded from the somatosensory (SI and SII) and associative (AS) areas of the cortex, the ventrobasal complex of the thalamus (VPL), the posterior hypothalamus (HPT) and the dorsal hippocampus (HPC). The amplitude of each component of the EPs in all explored structures were the largest in SWS and the smallest in W. A phasic increase in amplitude was observed in the EPs recorded immediately before the appearance of the spindles of SWS and during the REM episodes of PS. The peak latencies of the late components were the longest in SWS. These changes of the amplitudes and latencies were greater in the responses to weak stimulation than in EPs to strong ones. The possible synaptic events of the sleep-dependent control of viscerosensory activity are discussed.  相似文献   

6.
Healthy subjects (n = 88) were asked to passively visualize positive and passive emotiogenic visual stimuli and also stimuli with a neutral emotional content. Images of the International Affective Picture System (IAPS) were used. Amplitude/time characteristics of the components of evoked EEG potentials (EPs), P1, N1, P2, N2, and P3 and topographic distribution of the latter components were analyzed. The latencies, amplitudes, and topography of the EP waves induced by presentation of positive and negative stimuli were found to be different from the respective values for the EPs induced by neutral stimuli. The level and pattern of these differences typical of different EP components were dissimilar and depended on the sign of the emotions. Specificities related to the valency of an identified stimulus were observed within nearly all stages of processing of visual signals, for the negative stimuli, beginning from an early stage of sensory analysis corresponding to the development of wave Р1. The latencies of components Р1 in the case of presentation of emotiogenic negative stimuli and those of components N1, N2, and Р3 in the case of presentation of the stimuli of both valencies were shorter than the latencies observed at neutral stimuli. The amplitude of component N2 at perception of positive stimuli was, on average, lower, while the Р3 amplitude at perception of all emotiogenic stimuli was higher than in the case of presentation of neutral stimuli. The time dynamics of topographic peculiarities of processing of emotiogenic information were complicated. Activation of the left hemisphere was observed during the earliest stages of perception, while the right hemisphere was activated within the intermediate stages. Generalized activation of the cortex after the action of negative signals and dominance of the left hemisphere under conditions of presentation of positive stimuli were observed only within the final stages. As is supposed, emotiogenic stimuli possess a greater biological significance than neutral ones, and this is why the former attract visual attention first; they more intensely activate the respective cortical zones, and the corresponding visual information is processed more rapidly. The observed effects were more clearly expressed in the case of action of negative stimuli; these effects involved more extensive cortical zones. These facts are indicative of the higher intensity of activating influences of negative emotiogenic stimuli on neutral systems of the higher CNS structures.  相似文献   

7.
Temporal and amplitude characteristics of averaged visual evoked potentials to presentation of lines, corners and crosses with different orientation recorded in 19 adult healthy subjects were compared in 34 derivations. In all subjects, the latencies of P1, N2, and P3 were shorter while their amplitudes were higher for crosses than for lines. The effect of lengthening of P1 peak latency from occipital to temporal cortex was mostly pronounced for EPs to a bar, whereas as increase in the P1 amplitude was most evident for a cross-like figure. Correlation of these data with: i) greater magnitude and shorter latencies of responses to crosses vs. bars in a half of cat striate neurons, ii) sensitivity of cells in monkey inferior temporal cortex to star-like figures, and iii) relatively better human recognition of figures with comers than with lines, as well as significance of the effects obtained for detection of image features in different areas of the human visual cortex is discussed.  相似文献   

8.
We studied the peculiarities of the amplitude/time parameters of evoked EEG potentials (EPs) and event-related potentials (ERPs) in 10- to 11-year-old children characterized by low and high anxiety levels. The latter levels were estimated using the scale of the manifest anxiety test of Prikhozhan and projective techniques (“House–Tree–Person,” HTP, and the Lüscher color test). For children with a high anxiety level, the amplitudes of the following EP components and ERPs were lower than those in low-anxiety children of the same age: P1 (predominantly in the occipital region of the left hemisphere), P2 (in the right occipital region), and Р300 wave (in different loci of both hemispheres). In high-anxiety children, we also more frequently observed increased amplitudes of the N2 component in the left parietal and right occipital regions. High-anxiety individuals were characterized by longer latencies of component P1 (mostly in the right frontal and left central regions) and, at the same time, shorter latencies of component N1 (in the parietal and occipital regions of the left hemisphere and also in the right temporal region). Thus, we found that the amplitude/time characteristics of a few EP components and ERPs in children with high anxiety levels differ statistically significantly from the parameters of corresponding EPs/ERPs in individuals of the same age but with low anxiety levels.  相似文献   

9.
We obtained reproducible cortical evoked potentials (EPs) in response to electrical stimulation of the rectum with 1 Hz frequency. We found 2 distinctly different EPs in response to rectal stimulation. In 5 females, the EP had an early onset latency (mean 26 msec) with multiple positive and negative peaks. In 10 females, the EP had a later onset latency (mean 52 msec) and a trifid configuration, having a very prominent negative peak. The early onset EPs after rectal stimulation appeared very similar to the wave form of the cortical EPs recorded after pudendal nerve stimulation. Finding similar interpeak latencies in the early onset EP after rectal stimulation and the EP after pudendal nerve stimulation suggests that either the same pathway was used or that rectal stimulation also stimulated the pudendal nerve. It appears that we stimulated visceral afferents when we recorded late onset EPs, because the large EP amplitude declined rapidly with faster stimulation rates and also with greater number of averaging, and the sensation threshold was very unstable, all different to somatosensory EPs.  相似文献   

10.
The effects of sleep stage on early cortical somatosensory evoked potentials (SEPs) and short-latency components elicited by median nerve stimulation were studied in 12 normal volunteers. The latency of P13 in the awake stage was not significantly different from that in any sleep stage. The latencies of N16, N20 and P20 were significantly prolonged while the amplitude of N20 was decreased during the non-rapid eye movement (NREM) sleep stage. P22, P23 and N24 components showed double peaks (P23a, P23b, N24a, N24b) during the NREM sleep stage in 6 subjects, while N24 showed a single peak and only P22 and P23 showed double peaks in 5 other subjects. The latencies and morphologies of SEPs during rapid eye movement sleep stage were almost the same as those during the awake stage. These findings suggest that NREM sleep affects the latency, amplitude and morphology of N16 and early cortical components.  相似文献   

11.
Peak latencies (PLs) of seven isopolar components of the evoked potentials (EPs) of the occipital and central areas in patients with different extent of depressions with the predominance of alarm or anguish affects were compared with healthy ones. In alarm affect the differences in PLs of EP components dominant in the occipital areas while in anguish affect they prevail in the central cortical zones.  相似文献   

12.
Evoked responses (EPs) of the auditory and the sensorimotor cortical areas were studied in experiments on cats during formation of a positive food-procuring conditioned reflex to a rhythmic sequence of clicks and during formation of the differentiation inhibition in response to the clicks of the same parameters, but with different frequency. In the positive conditioned reflex the EPs amplitude in the sensorimotor cortex increases; they are enriched by late components and in their general configuration they become much similar to EPs in the auditory area. The EPs patterns both in the auditory and in the sensorimotor areas considerably change in response to the differentiation stimulus, but differently in each of the sites.  相似文献   

13.
We recorded cortical potentials evoked by painful CO2 laser stimulation (pain SEP), employing an oddball paradigm in an effort to demonstrate event-related potentials (ERP) associated with pain. In 12 healthy subjects, frequent (standard) pain stimuli (probability 0.8) were delivered to one side of the dorsum of the left hand while rare (target) pain stimuli (probability 0.2) were delivered to the other side of the same hand. Subjects were instructed to perform either a mental count or button press in response to the target stimuli. Two early components (N2 and P2) of the pain SEP demonstrated a Cz maximal distribution, and showed no difference in latency, amplitude or scalp topography between the oddball conditions or between response tasks. In addition, another positive component (P3) following the P2 was recorded maximally at Pz only in response to the target stimuli with a peak latency of 593 msec for the count task and 560 msec for the button press task. Its scalp topography was the same as that for electric and auditory P3. The longer latency of pain P3 can be explained not only by its slower impulse conduction but also by the effects of task difficulty in the oddball paradigm employing the pain stimulus compared with electric and auditory stimulus paradigms. It is concluded that the P3 for the pain modality is mainly related to a cognitive process and corresponds to the P3 of electric and auditory evoked responses, whereas both N2 and P2 are mainly pain-related components.  相似文献   

14.
We examined the recovery cycles of auditory event-related potentials (ERPs) in a high-speed auditory discrimination task and in passive conditions. Each trial contained 3 tones cued by a warning flash. In passive conditions, auditory ERPs consisted mainly of N1 (108 msec) and P2 (213 msec) components superimposed on a small CNV. The N1 and P2 were comparable in amplitude and both had prolonged refractory periods. In discriminative reaction time (DRT) conditions the same tones cued or inhibited press responses and elicited additional endogenous components (principally the Nd and P3). ERPs in DRT conditions were superimposed upon a prominent CNV that began after the warning cue and lasted throughout the signal delivery period.The N1 was larger in active than passive conditions and showed less marked refractory effects, while the P2 was smaller and showed more marked refractoriness. Differences between active and passive conditions could be explained by the presence of an endogenous negative potential (the Nd) with a short refractory period that was superimposed upon the N1 and P2.The P3 was recorded only in active conditions. At short ISIs (0.5 sec), P3 amplitudes were reduced and P3 latencies lengthened in parallel with prolongations in reaction time due to so-called psychological refractory period (PRP) effects. Both P3 recovery and the PRP reflected central mechanisms since they were observed at short ISIs when stimuli cueing different responses succeeded one another.N1 and P3 amplitudes diminished over the course of the experiment in both active and passive conditions. The decrease (amounting to about 30% of initial amplitudes) did not appear due to reductions in vigilance, since it was not accompanied by changes in reaction time or response accuracy, or by changes in other endogenous components (CNV or Nd). Short-term N1 habituation was unaffected by long-term amplitude reductions suggesting that independent mechanisms were responsible for the two phenomena.  相似文献   

15.
The relationship between the latencies and amplitudes of the N1 and P2 components of the visual evoked potential (VEP) and the psychophysiological state of the brain immediately preceding the time of the stimulus has been investigated in 7 male subjects. Power spectral measures in the delta, theta, alpha and beta bands of the 1 sec pre-stimulus EEG were used to assess the brain state, and low intensity flashes, delivered randomly between 2 and 6 whole seconds, were used as the stimuli. Trials were ranked separately according to the relative amounts of pre-stimulus power in each EEG band and were partitioned into groups by an equal pre-stimulus spectral power criterion. Averaged EPs were computed from these groups and multiple regression analysis was used to relate pre-stimulus spectral power values to EP features. Five of the 7 subjects displayed consistent increases in N1-P2 amplitude as a function of increasing pre-stimulus relative alpha power. The between-subjects effect of pre-stimulus EEG on N1 latency was small, but was moderate for P2 latency (both significant). Both N1 and P2 latency were found to decrease with increasing amounts of pre-stimulus relative delta and theta power.  相似文献   

16.
Recognition of joy, anger, and fear by face expression in humans   总被引:1,自引:0,他引:1  
Behavioral and neurophysiological characteristics of a visual recognition of emotions of joy, anger, and fear were studied in 9 young healthy men and 10 women. It was shown that these emotions were identified by subjects with different rate and accuracy; significant gender differences in recognition of anger and fear were found. Recording of visual evoked potentials (VEP) from the occipital (O1/2), medial temporal (T3/4), inferior temporal (T5/6), and frontal (F3/4) areas revealed differences (related with the type of emotion) in the latencies of P150, N180, P250, and N350 waves and in the amplitude of VEP components with the latencies longer than 250 ms. These differences were maximally expressed in T3/4 derivation. The subjects could be divided in two groups. The first group was characterized by increased VEP latencies and higher amplitudes of VEP components later than 250 ms in response to anger (in comparison with other types of emotions). These phenomena were observed in all the derivations but were most pronounced in T3/4. In the second group, only late P250 and N350 components had shorter latencies during recognition of fear. VEP amplitude variations related with the type of emotions were insignificant and were recorded in the occipital and frontal areas. The two groups of subjects also differed in psychoemotional personality characteristics. It is suggested that primary recognition of facial expression takes place in the temporal cortical areas. A possible correlation of electrophysiological indices of emotion recognition with personality traits is discussed.  相似文献   

17.
Visual evoked potentials (EPs) of the left and right hemispheres in response to relevant and irrelevant stimuli in the structures of the left and right hemispheres have been studied in healthy young schoolchildren, learning-disabled (LD) children, and mentally retarded (MR) children. In healthy children, the largest EP variations depending on the stimulus relevancy have been found in associative structures of the left hemisphere. In LD children of the same age, the amplitude and temporal characteristics of left-hemispheric EPs to target and nontarget stimuli are the same. In MR children, EPs to relevant and irrelevant stimuli do not differ from each other in either the left or the right hemisphere. EP latencies are significantly longer in MR children than in healthy children. The results of simultaneous recording of EPs in the left and right hemispheres during isolated stimulation of the right and left visual half-fields indicate that interhemispheric interaction is impaired in children with deviations in mental development. The results of the study are discussed in terms of the psychological characteristics and learning ability of children.  相似文献   

18.
Intrapair resemblance of the wave form and amplitude-temporal parameters of evoked potentials (EPs) to flashes, chess field, house image, the word "house" and a series of other stimuli was evaluated in 20 pairs of monozygotic and 20 pairs of homosexual dizygotic adult twins. In the occipital area the maximum of genetic dependence was characteristic of EPs to flashes, the minimum--of EPs--to the word "house". In vertex EPs parameters genotypic effects were manifest irrespectively of the stimulus type. Genotypic dependence differed for the amplitudes and latencies of separate EP components.  相似文献   

19.
Amplitude-latency characteristics of auditory evoked potentials (EPs) recorded in bilateral points of the lateral hypothalamus and amygdala were studied under food motivation, in emotional stress (presentation of dogs) and tentative reactions. In the state of hunger, as compared with safety, the latencies of P1, N2 components of EP in hypothalamus, and P1, N2, N3 in amygdala were decreased and their amplitudes were changed. Changes in the left side of both structures were more pronounced. During presentation of dogs, decreases of latencies of all EP components including N1 occurred in hypothalamus and amygdala, changes in hypothalamic potentials were more pronounced on the right side, whereas in the amygdala--on the left side. During tentative responses to emotional-neutral stimuli, the latency of EP increased. It was concluded that sensory reactivity of hypothalamus and amygdala increased in motivational-emotional states. It was supposed that the side of dominance of structure may be related both to the factors of active or passive behavior during fear and the genesis of emotion (motivational or informational).  相似文献   

20.
Modifications of the components of pattern-reversal visual evoked potentials (PR-VEP) with changes in check size of the stimulating pattern were studied in 11 healthy subjects. We made use of 8 different check size ranging between 10 and 90 min of arc. Changes in the check size modified in different manners the latencies and amplitudes of N75, P100 and N145. Two-step statistical analyses using the polynomial regression analysis method revealed significant modifications of latencies of the 3 components, but non-significant modifications of the amplitudes, except for N75. The latency and amplitude of N75 showed a significant inverse linear relationship with the logarithm of the check size, while the P100 and N145 latencies showed significant curvilinear relationships, with minimal latencies at check sizes around 35 min. These findings suggest different physiological properties of N75 from those of P100 and N145, and hence, the necessity to establish normal values for each check size of stimulation, for application in clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号