首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracellular matrix (ECM) glycoprotein fibronectin (FN) requires the help of cells to assemble into a functional fibrillar matrix, which then orchestrates the assembly of other ECM proteins and promotes cell adhesion, migration and signalling. Fibrillogenesis is initiated and governed by cell surface integrins that bind to specific sites in the FN molecule. Recent studies identified novel integrin binding sites in FN that can also participate in FN fibril formation and in morphogenetic events during development.  相似文献   

2.
The pathological hallmark of the host response to Mycobacterium tuberculosis is the granuloma where T cells and macrophages interact with the extracellular matrix (ECM) to control the infection. Recruitment and retention of T cells within inflamed tissues depend on adhesion to the ECM. T cells use integrins to adhere to the ECM, and fibronectin (FN) is one of its major components. We have found that the major M. tuberculosis cell wall glycolipid, phosphatidylinositol mannoside (PIM), induces homotypic adhesion of human CD4+ T cells and T cell adhesion to immobilized FN. Treatment with EDTA and cytochalasin D prevented PIM-induced T cell adhesion. PIM-induced T cell adhesion to FN was blocked with mAbs against alpha5 integrin chain and with RGD-containing peptides. Alpha5beta1 (VLA-5) is one of two major FN receptors on T cells. PIM was found to bind directly to purified human VLA-5. Thus, PIM interacts directly with VLA-5 on CD4+ T lymphocytes, inducing activation of the integrin, and promoting adhesion to the ECM glycoprotein, FN. This is the first report of direct binding of a M. tuberculosis molecule to a receptor on human T cells resulting in a change in CD4+ T cell function.  相似文献   

3.
We report the effect of the stable expression of a 13 amino acid human fibronectin (FN) peptide (FN13) on the organization of the FN extracellular matrix (ECM) and of FN integrin receptors (FNRs), in relationship with the inhibition of cellular invasion, in three FN-ECM defective human tumor-derived cell lines: SK-Hep1C3, hepatoma, ACN, neuroblastoma, and SK-OV-3, ovary carcinoma. All these cell lines stably expressing the FN13 peptide, organized an FN-ECM, disorganized alpha v beta 1 integrins and inactivated the ILK pathway, with the loss of secretion of MMP-9. This was associated with the inhibition of cell invasion in Matrigel matrix only in SK-Hep1C3 and ACN, but not in SK-OV-3 cells. Analysis of the integrin receptors organization showed that the FN13 expressing cells SK-Hep1C3 and ACN organized alpha v beta 3 integrins, whereas SK-OV-3 organized alpha v beta 5 dimers. The functional block of alpha v beta 5 integrins, with an inactivating anti-alpha v beta 5 antibody, led to the induction of alpha v beta 3 integrins also in SK-OV-3 cells, and to the inhibition of cell invasion. These data show that in the human tumor cells studied FN13 inhibits the in vitro invasion through the dissociation of alpha v beta 1 dimers, leading to ILK pathway inactivation, only when the organization of alpha v beta 3 integrins is induced in the plasma membrane.  相似文献   

4.
Neuronal responses to extracellular matrix (ECM) constituents are likely to play an important role in nervous system development and regeneration. We have studied the interactions of a neuron-like rat pheochromocytoma cell line, PC12, with ECM protein-coated substrates. Using a quantitative cell attachment assay, PC12 cells were shown to adhere readily to laminin (LN) or collagen IV (Col IV) but poorly to fibronectin (FN). The specificity of attachment to these ECM proteins was demonstrated using ligand-specific antibodies and synthetic peptides. To identify PC12 cell surface proteins that mediate interactions with LN, Col IV, and FN, two different antisera to putative ECM receptors purified from mammalian cells were tested for their effects on PC12 cell adhesion and neuritic process outgrowth. Antibodies to a 140-kD FN receptor heterodimer purified from Chinese hamster ovarian cells (anti-FNR; Brown, P. J., and R. L. Juliano, 1986, J. Cell Biol., 103:1595-1603) inhibited attachment to LN and FN but not to Col IV. Antibodies to an ECM receptor preparation purified from baby hamster kidney fibroblastic cells (anti-ECMR; Knudsen, K. A., P. E. Rao, C. H. Damsky, and C. A. Buck, 1981, Proc. Natl. Acad. Sci. USA., 78:6071-6075) inhibited attachment to LN, FN, and Col IV, but did not prevent attachment to other adhesive substrates. In addition to its effects on adhesion, the anti-ECMR serum inhibited both PC12 cell and sympathetic neuronal process outgrowth on LN substrates. Immunoprecipitation of surface-iodinated or [3H]glucosamine-labeled PC12 cells with either the anti-FNR or anti-ECMR serum identified three prominent cell surface glycoproteins of 120, 140, and 180 kD under nonreducing conditions. The 120-kD glycoprotein, which could be labeled with 32P-orthophosphate and appeared to be noncovalently associated with the 140- and 180-kD proteins, cross reacted with antibodies to the beta-subunit (band 3) of the avian integrin complex, itself a receptor or receptors for the ECM constituents LN, FN, and some collagens.  相似文献   

5.
Culture of A7r5 smooth muscle cells on a polyelectrolyte multilayer film (PEMU) can influence various cell properties, including adhesion, motility, and cytoskeletal organization, that are modulated by the extracellular matrix (ECM) in vivo. ECM contribution to cell behavior on PEMUs was investigated by determining the amount of fibronectin (FN) bound to charged and hydrophobic PEMUs by optical waveguide lightmode spectroscopy and immunofluorescence microscopy. FN bound best to poly(allylamine hydrochloride) (PAH)-terminated and Nafion-terminated PEMUs. FN bound poorly to PEMUs terminated with a copolymer of poly(acrylic acid) (PAA) and 3-[2-(acrylamido)-ethyl dimethylammonio] propane sulfonate (PAA-co-AEDAPS). Cells adhered and spread well on the Nafion-terminated PEMU surfaces. In contrast, cells spread less and migrated more on both FN-coated and uncoated PAH-terminated PEMU surfaces. Both cells and FN interacted much better with Nafion than with PAA-co-PAEDAPS in a micropatterned PEMU. These results indicate that A7r5 cell adhesion, spreading, and motility on PEMUs can be independent of FN binding to the surfaces.  相似文献   

6.
Fibronectin (FN) is an extracellular matrix (ECM) protein involved in tumor growth and metastasis. Five human FN cDNA segments encoding for FN fragments, all starting with the II1 repeat and ending with different C-terminal extensions, have been stably expressed in chick embryo fibroblasts (CEF). These FN cDNAs induce the formation of an organized ECM in CEF as long as they retain a sequence coding for a 13-amino acid stretch (FN13), with collagen binding activity, localized between type II2 and I7 repeats. An FN13 synthetic peptide induces in control CEF the assembly of an FN-ECM comparable with that observed in CEF-expressing FN fragments. The activity of FN13 is specific for its amino acid sequence, although the cysteine present in the 6th position can be substituted with a polar serine without affecting the induction of a fibrillar FN-ECM. A less fibrillar matrix is induced by FN13-modified peptides in which the cysteine is methylated or substituted by a non-polar alanine. FN13 induces the assembly of an FN-ECM also in Rous sarcoma virus-transformed CEF lacking the ECM and in hepatoma (SK-Hep1) and fibrosarcoma (HT-1080) human cell lines. FN13 also promotes the adhesion of CEF and Rous sarcoma virus-CEF at levels comparable with those obtained with purified intact FN. Finally, FN13 inhibits the migratory and invasive properties of tumorigenic cells, whereas intact FN favors their migration. All FN13-modified peptides show similar effects, although with reduced efficiency. None of these activities is supported by a scrambled peptide. These data suggest a possible role of FN13 in tumor growth and metastasis inhibition and its possible use as anti-tumorigenic agent.  相似文献   

7.
Dermal fibroblasts derived from types I and IV Ehlers-Danlos syndrome (EDS) patients, carrying mutations in COL5A1 and COL3A1 genes, respectively, synthesize aberrant types V and III collagen (COLL) and show defective organization of these proteins into the extracellular matrix (ECM) and high reduction of their functional receptor, the alpha(2)beta(1) integrin, compared with control fibroblasts. EDS cells also show reduced levels of fibronectin (FN) in the culture medium and lack an FN fibrillar network. Finally, EDS cells prevalently organize alpha(v)beta(3) integrin instead of alpha(5)beta(1) integrin. The alpha(v)beta(3) integrin, distributed on the whole EDS cell surface, shows FN binding and assembly properties when the cells are treated with purified FN. Treatment of EDS cells with purified COLLV or COLLIII, but not with FN, restores the control phenotype (COLL(+), FN(+), alpha(v)beta(3)(-), alpha(5)beta(1)(+), alpha(2)beta(1)(+)). Function-blocking antibodies to COLLV, COLLIII, or alpha(2)beta(1) integrin induce in control fibroblasts an EDS-like phenotype (COLL(-), FN(-), alpha(v)beta(3)(+), alpha(5)beta(1)(-), alpha(2)beta(1)(-)). These results show that in human fibroblasts alpha(2)beta(1) integrin organization and function are controlled by its ligand, and that the alpha(2)beta(1)-COLL interaction, in turn, regulates FN integrin receptor recruitment: high alpha(2)beta(1) integrin levels induce alpha(5)beta(1) integrin organization, while low alpha(2)beta(1) integrin levels lead to alpha(v)beta(3) integrin organization.  相似文献   

8.
Zebrafish gastrulation entails morphogenetic cell movements that shape the body plan and give rise to an embryo with defined anterior–posterior and dorsal–ventral axes. Regulating these cell movements are diverse signaling pathways and proteins including Wnts, Src-family tyrosine kinases, cadherins, and matrix metalloproteinases. While our knowledge of how these proteins impact cell polarity and migration has advanced considerably in the last decade, almost no data exist regarding the organization of extracellular matrix (ECM) during zebrafish gastrulation. Here, we describe for the first time the assembly of a fibronectin (FN) and laminin containing ECM in the early zebrafish embryo. This matrix was first detected at early gastrulation (65% epiboly) in the form of punctae that localize to tissue boundaries separating germ layers from each other and the underlying yolk cell. Fibrillogenesis increased after mid-gastrulation (80% epiboly) coinciding with the period of planar cell polarity pathway-dependent convergence and extension cell movements. We demonstrate that FN fibrils present beneath deep mesodermal cells are aligned in the direction of membrane protrusion formation. Utilizing antisense morpholino oligonucleotides, we further show that knockdown of FN expression causes a convergence and extension defect. Taken together, our data show that similar to amphibian embryos, the formation of ECM in the zebrafish gastrula is a dynamic process that occurs in parallel to at least a portion of the polarized cell behaviors shaping the embryonic body plan. These results provide a framework for uncovering the interrelationship between ECM structure and cellular processes regulating convergence and extension such as directed migration and mediolateral/radial intercalation.  相似文献   

9.
Fibulin is a recently described extracellular matrix (ECM) and plasma glycoprotein (Argraves, W. S., Tran, H., Burgess, W. H., and Dickerson, K. (1990) J. Cell Biol. 111, 3155-3164). In this report, ligand affinity chromatography and solid-phase binding analyses were performed to determine which ECM protein(s) interact with fibulin. Fibulin-Sepharose bound two polypeptides of 240 and 100 kDa from the culture medium of metabolically radiolabeled fibroblasts. These two proteins were identified as fibronectin (FN) and fibulin, respectively, based on their electrophoretic behavior and reactivity with monoclonal antibodies. Consistent with the findings of affinity chromatography, fibulin bound to surfaces coated with FN (either plasma or cellular form) or fibulin but not with other ECM proteins, such as laminin, merosin, and types I and IV collagen. The binding of fibulin to solid-phase FN was estimated to have a Kd of 139 nM, whereas the Kd for self-interaction was 322 nM. Evaluation of proteolytic fragments from all regions of FN allowed a fibulin-binding site to be localized within a 23-kDa heparin-binding fragment containing type III repeats 13-14. Heparin did not compete for the interaction between fibulin and FN, suggesting that the binding sites for fibulin and heparin are distinct.  相似文献   

10.
Fibronectin (FN) is a ubiquitously expressed cell adhesion protein capable of assembling into large, extended fibrillar networks as part of an extracellular matrix (ECM) that regulates cell behavior. FN is a substrate for certain members of the transglutaminase family of protein-crosslinking enzymes-enzymes which can modify the ability of FN to support cell adhesion. In this study, we have analyzed the thermo-chemical stability of plasma FN in its noncrosslinked form, and after crosslinking by transglutaminase 2 (TG2), using dynamic light scattering. We report that FN is found in a generally globular (8.7 nm hydrodynamic radius), dimerized form in aqueous solutions, but unfolds into a linear arrangement at high ionic (1 M NaCl) and chaotropic (5 M urea) environments. FN conformation remained stable after multiple heating and cooling cycles ranging from 4 to 60 degrees C. Crosslinking of FN with TG2 formed large, multimeric complexes having high chemical stability in aqueous, high ionic and chaotropic environments, demonstrating that this covalent modification stabilizes FN. Given recent data that substrate (e.g. ECM) rigidity profoundly affects cell differentiation and behavior, we further studied how TG2 crosslinking affects the molecular rigidity of FN by obtaining atomic force microscopy nanoindentation measurements from untreated and crosslinked FN samples embedded in acrylamide gels. We demonstrate that TG2-mediated crosslinking of FN significantly increases Young's modulus (of elasticity), an observation of increased rigidity having important implications with respect to the biological role of ECM protein-crosslinking in cell signaling and guiding cell differentiation.  相似文献   

11.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer ECM protein-based materials with precise control over the protein composition, fiber geometry and scaffold architecture in order to recapitulate the structure and composition of the ECM in vivo.  相似文献   

12.
Integrin subunits present on human bladder cells displayed heterogeneous functional specificity in adhesion to extracellular matrix proteins (ECM). The non-malignant cell line (HCV29) showed significantly higher adhesion efficiency to collagen IV, laminin (LN) and fibronectin (FN) than cancer (T24, Hu456) and v-raf transfected (BC3726) cell lines. Specific antibodies to the alpha(2), alpha(5) and beta(1) integrin subunits inhibited adhesion of the non-malignant cells, indicating these integrin participation in the adhesion to ECM proteins. In contrast, adhesion of cancer cells was not inhibited by specific antibodies to the beta(1) integrin subunit. Antibodies to alpha(3) integrin increased adhesion of cancer cells to collagen, LN and FN, but also of the HCV29 line with collagen. It seems that alpha(3) subunit plays a major role in modulation of other integrin receptors especially in cancer cells. Differences in adhesion to ECM proteins between the non-malignant and cancer cell lines in response to Gal and Fuc were not evident, except for the v-raf transfected cell line which showed a distinct about 6-fold increased adhesion to LN on addition of both saccharides. N-Acetylneuraminic acid inhibited adhesion of all cell lines to LN and FN irrespective of their malignancy.  相似文献   

13.
The interaction of cells with the extracellular matrix (ECM) form of fibronectin (FN) triggers changes in growth, migration, and cytoskeletal organization that differ from those generated by soluble FN. As cells deposit and remodel their FN matrix, the exposure of new epitopes may serve to initiate responses unique to matrix FN. To determine whether a matricryptic site within the III1 module of FN modulates cell growth or cytoskeletal organization, a recombinant FN with properties of matrix FN was constructed by directly linking the cryptic, heparin-binding COOH-terminal fragment of III1 (III1H) to the integrin-binding III8-10 modules (glutathione-S-transferase [GST]-III1H,8-10). GST-III1H,8-10 specifically stimulated increases in cell growth and contractility; integrin ligation alone was ineffective. A construct lacking the integrin-binding domain (GST-III1H,2-4) retained the ability to stimulate cell contraction, but was unable to stimulate cell growth. Both GST-III1H,2-4 and matrix FN colocalized with caveolin and fractionated with low-density membrane complexes by a mechanism that required heparan sulfate proteoglycans. Disruption of caveolae inhibited the FN- and III1H-mediated increases in cell contraction and growth. These data suggest that a portion of ECM FN partitions into lipid rafts and differentially regulates cytoskeletal organization and growth, in part, through the exposure of a neoepitope within the conformationally labile III1 module.  相似文献   

14.
The ability of NK cells to synthesize and secrete fibronectin (FN), an extracellular matrix glycoprotein which plays a key role in many biologic processes including cellular adhesion, morphology, cytoskeletal organization, cell migration, and invasiveness, was studied. By using affinity-purified polyclonal antibodies directed against human cellular or plasma FN, the presence of FN was evidentiated on Percoll-purified rat large granular lymphocyte or on a large granular lymphocyte tumor cell line (CRC) by flow cytometry and immunoelectron microscopy. Its expression increased after NK cell activation by poly I:C administration. Biochemical analysis by immunoprecipitation and SDS-PAGE indicated that FN was associated to cell surface and secreted in the supernatant in a molecular form similar to that of FN from L929 fibroblasts. In an attempt to understand the role of FN in the NK cell function, we found that an antibody against human plasma FN and its F(ab')2 fragment inhibited NK cytotoxicity against YAC-1 target at the effector cell level. Inhibition occurred at the postbinding level, because F(ab')2 anti-FN inhibited induction of phosphatidylinositol hydrolysis by YAC-1 target cells, whereas binding to target cells was not affected. The possible role of FN in the NK cytotoxic function is suggested.  相似文献   

15.
16.
Given prior evidence that adhesion molecules play critical roles in T cell recognition, it is important to identify new adhesion pathways and explore their role in T cell activation. Our studies of T cell proliferation complement concurrent studies of T cell adhesion; both demonstrate that resting CD4+ human T lymphocytes express the VLA integrins VLA-4, VLA-5, and VLA-6, and can use these receptors to interact with the extracellular matrix (ECM) proteins fibronectin (VLA-4 and VLA-5) and laminin (VLA-6). VLA-dependent interaction of resting human CD4+ T cells with fibronectin (FN) and laminin (LN) facilitates CD3-mediated T cell proliferation. Specifically, T cells do not proliferate in response to a wide range of concentrations of a CD3 mAb, OKT3, immobilized on plastic. However, coimmobilization with the CD3 mAb of FN or LN, but not other ECM proteins such as fibrinogen and collagen, consistently results in strong T cell proliferation. mAb blocking studies demonstrate that three VLA integrin receptor/ligand interactions mediate costimulation: VLA-4/FN, VLA-5/FN, and VLA-6/LN. VLA-5-dependent binding to FN but not costimulation by FN can be specifically blocked with peptides containing the RGD (arg-gly-asp) tripeptide sequence whereas VLA-4-dependent binding and costimulation can both be efficiently inhibited by a 12 amino acid peptide, LHGPEILDVPST (leu-his-gly-pro-glu-iso-leu-asp-val-pro-ser-thr), derived from the alternatively spliced IIICS region of FN. The costimulation provided by FN and LN in this system is stronger than and distinct from costimulatory signals provided by cytokines, such as IL-1 beta, IL-6,, and IL-7. These results suggest that, such as other adhesion molecules, T cell VLA integrins may also function in a dual capacity as adhesion and signalling molecules. In addition, they suggest that the interaction of T cells in vivo with ECM via VLA integrins plays a role not only in T cell migratory processes but may also influence Ag-specific T cell recognition.  相似文献   

17.
The complex structural organization of the aortic valve (AV) extracellular matrix (ECM) enables large and highly nonlinear tissue level deformations. The collagen and elastin (elastic) fibers within the ECM form an interconnected fibrous network (FN) and are known to be the main load-bearing elements of the AV matrix. The role of the FN in enabling deformation has been investigated and documented. However, there is little data on the correlation between tissue level and FN-level strains. Investigating this correlation will help establish the mode of strain transfer (affine or nonaffine) through the AV tissue as a key feature in microstructural modeling and will also help characterize the local FN deformation across the AV sample in response to applied tissue level strains. In this study, the correlation between applied strains at tissue level, macrostrains across the tissue surface, and local FN strains were investigated. Results showed that the FN strain distribution across AV samples was inhomogeneous and nonuniform, as well as anisotropic. There was no direct transfer of the deformation applied at tissue level to the fibrous network. Loading modes induced in the FN are different than those applied at the tissue as a result of different local strains in the valve layers. This nonuniformity of local strains induced internal shearing within the FN of the AV, possibly exposing the aortic valve interstitial cells (AVICs) to shear strains and stresses.  相似文献   

18.
Cell binding to extracellular matrix (ECM) components changes cytoskeletal organization by the activation of Rho family GTPases. Tenascin-C, a developmentally regulated matrix protein, modulates cellular responses to other matrix proteins, such as fibronectin (FN). Here, we report that tenascin-C markedly altered cell phenotype on a three-dimensional fibrin matrix containing FN, resulting in suppression of actin stress fibers and induction of actin-rich filopodia. This distinct morphology was associated with complete suppression of the activation of RhoA, a small GTPase that induces actin stress fiber formation. Enforced activation of RhoA circumvented the effects of tenascin. Effects of active Rho were reversed by a Rho inhibitor C3 transferase. Suppression of GTPase activation allows tenascin-C expression to act as a regulatory switch to reverse the effects of adhesive proteins on Rho function. This represents a novel paradigm for the regulation of cytoskeletal organization by ECM.  相似文献   

19.
The mechanism by which vascular smooth muscle (VSM) cells modulate their contractility in response to structural cues from extracellular matrix remains poorly understood. When pulmonary VSM cells were cultured on increasing densities of immobilized fibronectin (FN), cell spreading, myosin light chain (MLC) phosphorylation, cytoskeletal prestress (isometric tension in the cell before vasoagonist stimulation), and the active contractile response to the vasoconstrictor endothelin-1 all increased in parallel. In contrast, MLC phosphorylation did not increase when suspended cells were allowed to bind FN-coated microbeads (4.5-microm diameter) or cultured on micrometer-sized (30 x 30 microm) FN islands surrounded by nonadhesive regions that support integrin binding but prevent cell spreading. Cell spreading and MLC phosphorylation also both decreased in parallel when the mechanical compliance of flexible FN substrates was raised. MLC phosphorylation was inhibited independently of cell shape when cytoskeletal prestress was dissipated using a myosin ATPase inhibitor in fully spread cells, whereas it increased to maximal levels when microtubules were disrupted using nocodazole in cells adherent to FN but not in suspended cells. These data demonstrate that changes in cell-extracellular matrix (ECM) interactions modulate smooth muscle cell contractility at the level of biochemical signal transduction and suggest that the mechanism underlying this regulation may involve physical interplay between ECM and the cytoskeleton, such that cell spreading and generation of cytoskeletal tension feed back to promote MLC phosphorylation and further increase tension generation.  相似文献   

20.
Stem cell factor (SCF) is essential to the migration and differentiation of melanocytes during embryogenesis because mutations in either the SCF gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Using a neural crest cell (NCC) primary culture system from wild‐type mice, we previously demonstrated that KIT‐positive and/or L ‐3, 4‐dihydroxyphenylalanine (DOPA)‐positive melanocyte precursors proliferate following the addition of SCF to the culture medium. Extracellular matrix (ECM) proteins are considered to play a role in the migration and differentiation of various cells including melanocytes. We cultured mouse NCCs in the presence of SCF in individual wells coated with ECM; fibronectin (FN), collagen I (CLI), chondroitin sulphate, or dermatan sulphate. More KIT‐positive cells and DOPA‐positive cells were detected in the presence of SCF on ECM‐coated wells than on non‐coated wells. A statistically significant increase in DOPA‐positive cells was evident in FN and CLI wells. In contrast, in the absence of SCF, few DOPA‐positive cells and KIT‐positive cells were detected on either the ECM‐coated or non‐coated wells. We concluded that ECM affect melanocyte proliferation and development in the presence of SCF. To determine the key site of FN function, RGDS peptides in the FN sequence, which supports spreading of NCCs, were added to the NCC culture. The number of DOPA‐positive cells decreased with RGDS concentration in a dose‐dependent fashion. Immunohistochemical staining revealed the presence of integrin a5, a receptor of RGDS, in NCCs. These results suggest the RGDS domain of FN plays a contributory role as an active site in the induction of FN function in NCCs. In addition, we examined the effect of FN with SCF on the NCC migration by measuring cluster size, and found an increase in size following treatment with FN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号