首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of yeast forms to human lung fibroblast cultures was analyzed, aiming to better understand the initial steps of Paracoccidioides brasiliensis infection in humans. A significant P. brasiliensis adhesion was observed either to fibroblasts or to their Triton X-100 insoluble fraction, which contains extracellular matrix and membrane microdomains enriched in glycosphingolipids. Since human lung fibroblasts express at cell-surface gangliosides, such as GM1, GM2, and GM3, the role of these glycosphingolipids on P. brasiliensis adhesion was analyzed by different procedures. Anti-GM3 monoclonal antibody or cholera toxin subunit B (which binds specifically to GM1) reduced significantly fungal adhesion to fibroblast cells, by 35% and 33%, respectively. Direct binding of GM1 to yeast forms of P. brasiliensis was confirmed using cholera toxin subunit B conjugated to AlexaFluor®488. It was also demonstrated that P. brasiliensis binds to polystyrene plates coated with galactosylceramide, lactosylceramide, trihexosylceramide, GD3, GM1, GM3, and GD1a, suggesting that glycosphingolipids presenting residues of beta-galactose or neuraminic acid at non-reducing end may act as adhesion molecules for P. brasiliensis. Conversely, no binding was detected when plates were adsorbed with glycosphingolipids that contain terminal residue of beta-N-acetylgalactosamine, such as globoside (Gb4), GM2, and asialo-GM2. In human fibroblast (WI-38 cells), GM3 and GM1 are associated with membrane rafts, which remain insoluble after treatment with Triton X-100 at 4°C. Taken together, these results strongly suggest that lung fibroblast gangliosides, GM3 and GM1, are involved in binding and/or infection by P. brasiliensis.  相似文献   

2.
The effects of the drug flocalin, which possesses cardioprotective properties, on the respiration rates of rat-heart and liver mitochondria in different functional states, the efficiency of oxidative phosphorylation, as well as the transport of potassium ions in these organelles, were studied. It was found that flocalin at concentrations of 7–30 μm stimulated respiration of rat-heart and liver mitochondria in V 2 and V 4 states in the presence of succinic add as a respiration substrate in a potassium-containing medium. In the absence of potassium ions in the incubation medium, flocalin had no effect on mitochondrial respiration in these states. Studying the functioning of the potassium transport system revealed that flocalin at these concentrations dose-dependently activated the ATP-dependent transport of potassium ions in rat-heart and liver mitochondria. The data we obtained indicate that the cardioprotective effect of flocalin can be associated with activation of the ATP-dependent potassium channel of the inner mitochondrial membrane.  相似文献   

3.
The effect of palmitic acid on the oxidation of dopamine, i.e., on the monoamine oxidase (MA-oxidase) activity, was investigated on deenergized liver mitochondria, upon energization by ATP and also in the presence of an oxidizing agent tert-butylhydroperoxide (TBH). It was found that palmitic acid reduces the value of the apparent K m for dopamine without alteration of the apparent V max. This points to stimulation of the mitochondrial MA-oxidase activity by palmitic acid at low concentrations of dopamine. Stimulatory effect of palmitic acid may be related to the ability of amphiphilic compounds to increase the negative charge density on the outer mitochondrial membrane. This leads to an increase in the local concentration of positively charged ions of dopamine in the layer adjacent to the membrane near the active site of monoamine oxidase. ATP eliminates the ability of palmitic acid to stimulate the MA-oxidase activity of mitochondria. This effect of ATP is not observed in the presence of the F O F 1-ATP-synthase inhibitor oligomycin. Apparently, in the case of vector transport of H+ from the matrix induced by ATP-hydrolysis, protonation of palmitic acid anions occurs on the outer mitochondrial membrane, followed by the movement of the neutral molecules to the outer and then to the inner monolayer of the inner membrane. It was found that TBH at a concentration of 300 μM has no significant effect on the ATPase activity of mitochondria and in the presence of ATP and palmitic acid reduces the value of the apparent K m for dopamine without alteration of the apparent V max. Antioxidant thiourea eliminates this effect of TBH. We propose that the TBH-induced oxidative stress in the case of ATP-energized mitochondria results in the movement of palmitic acid molecules from the inner to the outer membrane. This leads to an increase in the density of negative charges on the surface of this membrane and, therefore, to the stimulation of the dopamine oxidation.  相似文献   

4.
There have been obtained evidences that not only GM1, but also other main brain gangliosides (GD1a, GD1b, and GT1b) increase viability of cells of the neuronal line PC12 under action of H2O2. By the example of GM1 and GD1a, gangliosides have been shown to produce a protective effect on PC12 cells under conditions of oxidative stress both at micro- and nanomolar concentrations that are physiological concentrations of gangliosides in cerebrospinal fluid. For the first time, GM1 at nanomolar concentrations was shown to decrease the H2O2-induced formation of reactive oxygen species (ROS). It was found that in the presence of inhibitor of tyrosine kinase Trk of receptors K-252a, GM1 at concentrations of 10 μM and 10 nM lost its ability to produce such metabolic effects as a decrease of ROS accumulation and of the degree of oxidative inactivation of Na+,K+-ATPase in PC12 cells, as well as ceased to increase viability of these cells under conditions of oxidative stress. The dependence of protective and metabolic effects of gangliosides GM1 in PC12 cells treated with H2O2 on modulation of activity of activity of tyrosine kinase Trk receptors (i.e., from the same signal system) agrees with concept about the essential role of oxidant effect of GM1 in its increase of cell viability.  相似文献   

5.
Hurler syndrome (MPS IH) is caused by a mutation in the gene encoding alpha-L-iduronidase (IDUA) and leads to the accumulation of partially degraded glycosaminoglycans (GAGs). Ganglioside content is known to increase secondary to GAG accumulation. Most studies in organisms with MPS IH have focused on changes in gangliosides GM3 and GM2, without the study of other lipids. We evaluated the total lipid distribution in the whole brain and cerebellum of MPS IH (Idua ?/?) and control (Idua +/?) mice at 6 months and at 12 months of age. The content of total sialic acid and levels of gangliosides GM3, GM2, and GD3 were greater in the whole brains of Idua ?/? mice then in Idua +/? mice at 12 months of age. No other significant lipid differences were found in either whole brain or in cerebellum at either age. The accumulation of ganglioside GD3 suggests that neurodegeneration occurs in the Idua ?/? mouse brain, but not to the extent seen in human MPS IH brain.  相似文献   

6.
Understanding the key processes and mechanisms of photosynthetic and respiratory acclimation of maize (Zea mays L.) plants in response to experimental warming may further shed lights on the changes in the carbon exchange and Net Primary Production (NPP) of agricultural ecosystem in a warmer climate regime. In the current study, we examined the temperature responses and sensitivity of foliar photosynthesis and respiration for exploring the mechanisms of thermal acclimation associated with physiological and biochemical processes in the North China Plain (NCP) with a field manipulative warming experiment. We found that thermal acclimation of An as evidenced by the upward shift of An-T was determined by the maximum velocity of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax), and the stomatal- regulated CO2 diffusion process (gs), while the balance between respiration and photosynthesis (Rd/Ag), and/or regeneration of RuBP and the Rubisco carboxylation (Jmax/Vcmax) barely affected the thermal acclimation of An. We also found that the temperature response and sensitivity of Rd was closely associated with the changes in foliar N concentration induced by warming. These results suggest that the leaf-level thermal acclimation of photosynthesis and respiration may mitigate or even offset the negative impacts on maize from future climate warming, which should be considered to improve the accuracy of process-based ecosystem models under future climate warming.  相似文献   

7.
We studied the effect of quinocitrinines on the respiratory activity of yeasts (Yarrowia lipolytica) and bacteria (Arthrobacter globiformis). Quinocitrinines were shown to activate respiration of native cells in both types of organisms. Studies of yeast mitochondria showed that quinocitrinine exerts an uncoupling effect on oxidative phosphorylation, which activates the respiration, reduces the respiratory control, and decreases the ADP/O ratio. Experiments with intact mitochondria and native cells of Arthrobacter globiformis revealed that quinocitrinine decreases the membrane potential. The uncoupling effect likely constitutes a mechanism of the antibiotic activity of quinocitrinines.  相似文献   

8.
The yeast Pichia guilliermondii is capable of riboflavin overproduction under iron deficiency. The rib80, hit1, and red6 mutants of this species, which exhibit impaired riboflavin regulation, are also distinguished by increased iron concentrations in the cells and mitochondria, morphological changes in the mitochondria, as well as decreased growth rates (except for red6) and respiratory activity. With sufficient iron supply, the rib80 and red6 mutations cause a 1.5–1.8-fold decrease in the activity of such Fe-S cluster proteins as aconitase and flavocytochrome b 2, whereas the hit1 mutation causes a six-fold decrease. Under iron deficiency, the activity of these enzymes was equally low in all of the studied strains.  相似文献   

9.
The inotropic effect of Pr3+ and La3+ ions on the heart muscle of frog Rana ridibunda, as well as the influence of the ions on respiration, swelling, and the potential (ΔΨmito) on the inner membrane of Ca2+- loaded rat heart mitochondria, energized by glutamate and malate or succinate in the presence of rotenone were studied. It was found that 2 mM Pr3+ in Ringer’s solution reduces the force of spontaneous contractions and those induced by electrical stimulation in the heart; it had a negative chronotropic effect, decreasing the frequency of spontaneous contractions. Pr3+ and La3+ prevented a decrease in the 2,4-dinitrophenol (DNP)- uncoupled respiration of energized rat heart mitochondria, swelling of these organelles in salt media, and a reduction in ΔΨmito on the inner mitochondrial membrane that were induced by Ca2+ ions. Retardation by Pr3+ and La3+ ions of these calcium-induced effects may suggest that in the inner mitochondrial membrane these metals inhibit the opening of the mitochondrial permeability transition pore caused by Ca2+ overload of mitochondria. The data we obtained are important for a better understanding of the mechanisms of the damaging action of rare-earth elements on Ca2+-dependent processes in the vertebrate myocardium.  相似文献   

10.
The structural diversity and localization of cell surface glycosphingolipids (GSLs), including gangliosides, in glycolipid-enriched microdomains (GEMs, also known as lipid rafts) render them ideally suited to play important roles in mediating intercellular recognition, interactions, adhesion, receptor function, and signaling. Gangliosides, sialic acid-containing GSLs, are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and these changes are mainly regulated through stage-specific expression of glycosyltransferase genes. We previously demonstrated for the first time that efficient histone acetylation of the glycosyltransferase genes in mouse brain contributes to the developmental alteration of ganglioside expression. We further demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase; B4galnt1) gene promoter resulted in recruitment of trans-activation factors. In addition, we showed that epigenetic activation of the GalNAcT gene was detected and accompanied by an apparent induction of neuronal differentiation of neural stem cells (NSCs) responding to an exogenous supplement of ganglioside GM1. Most recently, we found that nuclear GM1 binds with acetylated histones on the promoters of the GalNAcT as well as on the NeuroD1 genes in differentiated neurons. Here, we will introduce epigenetic regulation of ganglioside synthase genes in neural development and neuronal differentiation of NSCs.  相似文献   

11.
Abstract— The ganglioside composition of the brain of a patient with Tay-Sachs disease (TS-brain) was determined by a newly developed ganglioside-mapping procedure and compared with that of an age-matched control brain. GM2 ganglioside was the predominant component in TS-brain and the following gangliosides were also found, GM1, GD1a, GD1b and GT1 (major gangliosides in normal brain), and GM3, GD3, GD2 and GD1a-GAN (minor or undetectable components of normal brain). Individual gangliosides were isolated by column chromatography using a combination of DEAE-Sepharose, Iatrobeads and Silica Gel 60 and their structures were confirmed by comparing them with authentic standards using TLC, analysing their carbohydrate compositions by gas-liquid chromatography and cleaving them sequentially with glycosidases. The amounts of individual components were measured by quantitative densitometric scanning of the thin-layer plates. As a reflection of myelin breakdown, no sialosylgalactosyl ceramide was detectable in TS-brain. Although the total amounts of all gangliosides except GM2 in TS-brain were low, there were normal molar ratios of the main gangliosides in normal brain, that is, GM1, GD1a, GD1b and GT1. In comparison with the amount of GDla ganglioside, the amounts of GM2, GD2 and GD1a-GAN, which contain N-acetylgalactosamine as a terminal carbohydrate residue, were all elevated in TS-brain. The long chain bases of individual gangliosides contained both C-18 and C-20 sphingosine in different ratios and the ratio of C-20 to C-18 increased in the gangliosides in the order: GM2 < GM1 < GD1a < GD1a-GAN < GD1b < GT1 in both normal brain and TS-brain. In contrast, GD2 and GD3 gangliosides consisted mainly of C-18 sphingosine. The C-20 to C-18 ratios of individual gangliosides in the TS-brain were lower than those of age-matched control brain. Hexosaminidase from Turbo cornutus showed the same specific activity and Km value in catalysing the cleavage of terminal N-acetylgalactosaminyl residues from GM2, GD2 and GD1a-GAN, suggesting that the brain gangliosides that increase in Tay-Sachs disease may be cleaved by the same enzyme.  相似文献   

12.
In this work, it was found that the ability of common uncouplers – carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP) and 2,4-dinitrophenol (DNP) – to reduce membrane potential of isolated rat liver mitochondria was diminished in the presence of millimolar concentrations of the known cytochrome c oxidase inhibitor – cyanide. In the experiments, mitochondria were energized by addition of ATP in the presence of rotenone, inhibiting oxidation of endogenous substrates via respiratory complex I. Cyanide also reduced the uncoupling effect of FCCP and DNP on mitochondria energized by succinate in the presence of ferricyanide. Importantly, cyanide did not alter the protonophoric activity of FCCP and DNP in artificial bilayer lipid membranes. The causes of the effect of cyanide on the efficiency of protonophoric uncouplers in mitochondria are considered in the framework of the suggestion that conformational changes of membrane proteins could affect the state of lipids in their vicinity. In particular, changes in local microviscosity and vacuum permittivity could change the efficiency of protonophore-mediated translocation.  相似文献   

13.
In C3 plants, part of the CO2 fixed during photosynthesis in chloroplasts is released from mitochondria during photorespiration by decarboxylation of glycine via glycine decarboxylase (GDC), thereby reducing photosynthetic efficiency. The apparent positioning of most mitochondria in the interior (vacuole side of chloroplasts) of mesophyll cells in C3 grasses would increase the efficiency of refixation of CO2 released from mitochondria by ribulose 1,5-bisphosphate carboxylase/?oxygenase (Rubisco) in chloroplasts. Therefore, in mesophyll cells of C4 grasses, which lack both GDC and Rubisco, the mitochondria ought not to be positioned the same way as in C3 mesophyll cells. To test this hypothesis, we investigated the intracellular position of mitochondria in mesophyll cells of 14 C4 grasses of different C4 subtypes and subfamilies (Chloridoideae, Micrairoideae, and Panicoideae) and a C3–C4 intermediate grass, Steinchisma hians, under an electron microscope. In C4 mesophyll cells, most mitochondria were positioned adjacent to the cell wall, which clearly differs from the positioning in C3 mesophyll cells. In S. hians mesophyll cells, the positioning was similar to that in C3 cells. These results suggest that the mitochondrial positioning in C4 mesophyll cells reflects the absence of both GDC and Rubisco in the mesophyll cells and the high activity of phosphoenolpyruvate carboxylase. In contrast, the relationship between the mitochondrial positioning and enzyme distribution in S. hians is complex, but the positioning may be related to the capture of respiratory CO2 by Rubisco. Our study provides new possible insight into the physiological role of mitochondrial positioning in photosynthetic cells.  相似文献   

14.

Introduction

Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated P CO2 (0.2 kPa CO2) at different levels of physiological organisation.

Results

For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid–base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated P CO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher P CO2 was compensated for by intracellular bicarbonate accumulation.

Conclusion

The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid–base regulation. New set points of acid–base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and P CO2.
  相似文献   

15.
Phosphatidate phosphatases (PAH) play a central role in lipid metabolism and intracellular signaling. Herein, we report the presence of a low-molecular-weight PAH homolog in the single-celled ciliate Tetrahymena thermophila. In vitro phosphatase assay showed that TtPAH2 belongs to the magnesium-dependent phosphatidate phosphatase (PAP1) family. Loss of function of TtPAH2 did not affect the growth of Tetrahymena. Unlike other known PAH homologs, TtPAH2 did not regulate lipid droplet number and ER morphology. TtPAH2 did not rescue growth and ER/nuclear membrane defects of the pah1? yeast cells, suggesting that the phosphatidate phosphatase activity of the protein is not sufficient to perform these cellular functions. Surprisingly, TtPAH2 complemented the respiratory defect in the pah1? yeast cells indicating a specific role of TtPAH2 in respiration. Overall, our results indicate that TtPAH2 possesses the minimal function of PAH protein family in respiration. We suggest that the amino acid sequences absent from TtPAH2 but present in all other known PAH homologs are critical for lipid homeostasis and membrane biogenesis.  相似文献   

16.
Silicon (Si) is known for its role in regulating the response of plants to imposed abiotic stresses. Since the stresses generally hinder production of a crop, such as rice, the exploration of the biochemistry and plant physiology relating to the function is of interest. Indeed, recently, there were reports on the function of Lsi1 in regulating the tolerance of rice to cadmium (Cd) stress. This study compared the kinetics of the Cd uptakes in Lemont wild type rice and its transgenic lines exposed to Cd with or without exogenous Si supply. At the same time, changes on the endogenous phytohormones and growth of the rice seedlings were monitored. Genetically, Lsi1 overexpression was found to downregulate Km and Vmax of Cd uptake kinetics in the plants under Cd stress, especially in the presence of Si. On the other hand, Lsi1 RNAi upregulated Km and Vmax regardless whether Si was present or not. It implied that Lsi1 could be capable of regulating Si as well as Cd transports. Under Cd stress, addition of Si reduced the Cd uptake of the rice lines in the order of Lsi1-overexpression line?>?Lemont?>?Lsi1-RNAi line. In addition, it also affected the chlorophyll biosynthesis and dry mass accumulation of the rice plants under Cd stress. Analyses on phytohormones including IAA, GA3, JA, SA and ABA, as well as physiological functions, of the seedlings further verified the active involvement of Lsi1 in the complex defense system of the plants against Cd stress.  相似文献   

17.
This work presents the results of spectral analysis of the time dependences, V(t), of endoplasmic shuttle motility in an isolated strand of plasmodium Physarum polycephalum that were obtained by laser Doppler microscopy after exposure to inhibitors of cellular respiration, viz., potassium cyanide and salicylhydroxamic acid, which lead to the complete cessation of endoplasmic motion. The results confirm the presence of only two harmonic components of V(t) dependences, with frequencies that differ by a factor of 2, ω21 = 1.972 ± 0.028, in different conditions: under normal conditions, without the addition of inhibitors; in a strand that was partially treated with inhibitors; and in the phase of restoring the oscillatory activity after the complete cessation of endoplasmic motion.  相似文献   

18.
For the first time, the possibility of maintaining an intact human mitochondrial genome in a heterologous system in the mitochondria of yeast Yarrowia lipolytica is shown. A method for introducing directional changes into the structure of the mitochondrial human genome replicating in Y. lipolytica by an artificially induced ability of yeast mitochondria for homologous recombination is proposed. A method of introducing and using phenotypic selection markers for the presence or absence of defects in genes tRNA-Lys and tRNA-Leu of the mitochondrial genome is developed. The proposed system can be used to correct harmful mutations of the human mitochondrial genome associated with mitochondrial diseases and for preparative amplification of intact mitochondrial DNA with an adjusted sequence in yeast cells. The applicability of the new system for the correction of mutations in the genes of Lys- and Leu-specific tRNAs of the human mitochondrial genome associated with serious and widespread human mitochondrial diseases such as myoclonic epilepsy with lactic acidosis (MELAS) and myoclonic epilepsy with ragged-red fibers (MERRF) is shown.  相似文献   

19.
The goal of this work was to elucidate the mechanism of inhibition of the actin-activated ATPase of myosin subfragment-1 (S1) by the calponin-like protein from mussel bivalve muscle. The calponin-like protein (Cap) is a 40-kDa actin-binding protein from the bivalve muscle of the mussel Crenomytilus grayanus. Kinetic parameters Vmax and KATPase of actomyosin ATPase in the absence and the presence of Cap were determined to investigate the mechanism of inhibition. It was found that Cap mainly causes increase in KATPase value and to a lesser extent the decrease in Vmax, which indicates that it is most likely a competitive inhibitor of actomyosin ATPase. Analysis of Vmax and KATPase parameters in the presence of tropomyosin revealed that the latter is a noncompetitive inhibitor of the actomyosin ATPase.  相似文献   

20.
The classical definition of mesophyll conductance (g m) represents an apparent parameter (g m,app) as it places (photo)respired CO2 at the same compartment where the carboxylation by Rubisco takes place. Recently, Tholen and co-workers developed a framework, in which g m better describes a physical diffusional parameter (g m,dif). They partitioned mesophyll resistance (r m,dif = 1/g m,dif) into two components, cell wall and plasmalemma resistance (r wp) and chloroplast resistance (r ch), and showed that g m,app is sensitive to the ratio of photorespiratory (F) and respiratory (R d) CO2 release to net CO2 uptake (A): g m,app = g m,dif/[1?+?ω(F?+?R d)/A], where ω is the fraction of r ch in r m,dif. We herein extend the framework further by considering various scenarios for the intracellular arrangement of chloroplasts and mitochondria. We show that the formula of Tholen et al. implies either that mitochondria, where (photo)respired CO2 is released, locate between the plasmalemma and the chloroplast continuum or that CO2 in the cytosol is completely mixed. However, the model of Tholen et al. is still valid if ω is replaced by ω(1?σ), where σ is the fraction of (photo)respired CO2 that experiences r ch (in addition to r wp and stomatal resistance) if this CO2 is to escape from being refixed. Therefore, responses of g m,app to (F?+?R d)/A lie somewhere between no sensitivity in the classical method (σ =1) and high sensitivity in the model of Tholen et al. (σ =0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号