首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In 1983, the media brought out articies expressing serious concerns as to the use of Urea Formaldehyde Foam Insulation (UFFI). The emission of formaldehyde vapours within UFF insulated homes was held responsible for ?serious health problems?. A major controversy then started, with on the one hand several consumer associations, and on the other, the UFFI raw materials producing companies, while government departments concerned were called upon to intervene. On careful consideration of facts, it clearly appeared that the number of health-related incidents that could be charged to UFFI was much smaller than uncontrolled rumour would indicate, and that the effects of formaldehyde, although very unpleasant, fortunately did not have the degree of severity reported. Establishing a dialogue between the parties involved seemed possible and a mutually acceptable solution, safegarding the interests of all concerned, within reach... UFFI could be used in homes provided it be implemented by skilled professionals who would accept to redress duly established insulation defects. Unfortunately, the anti-UFFI press campaign had ruined the image of the product in the mind of potential users. Industry gradually withdrew from the market. As for customers with defect ridden homes, they had no redress possibility left to them... Six years have elapsed since then, and it should now be possible to review the issue with a fresh and dispassionate mind, while assessing the causes and effects of the polemics of the past. UFFI is no longer used in France and may well not be for a long time yet, unless of course the value of an effective low cost insulation material well suited to existing buildings, is eventually rediscovered. In any event, it is unquestionably interesting to draw a lesson from this typical example and try to find better approaches to similar situations particularly in the housing sector, in order to best meet the requirements of all concerned.  相似文献   

2.
A study was carried out to assess the respiratory function of children living in homes insulated with urea formaldehyde foam insulation (UFFI). A large data base on the effect of environmental variables on the respiratory function of 3500 children in the Hamilton, Ont., area had been collected from 1978 to 1980. From this data base 29 children who lived in UFFI-insulated homes were identified, and each was matched with 2 controls according to nine variables that had been shown to be strongly predictive of respiratory function. Reported respiratory symptoms and results of pulmonary function testing in the year immediately following installation of UFFI were examined. No significant differences in any variable were found between the subjects and controls. A power calculation indicated that the study had adequate power to detect clinically important changes. The authors conclude that there was no evidence of respiratory problems resulting from UFFI in the sample studied.  相似文献   

3.
It has been reported that single exposure of rats of low-level formaldehyde vapor concentrations causes significant alteration in their motor activity in the inhalation chamber. In this study, we determined the effects of formaldehyde on the locomotor activity and behavior of adult male and female Lew. 1K rats in an open field two hours after termination of a single two hours lasting inhalative exposure to approximately 0.1, 0.5, or 5 ppm. Following behavioral parameters were quantitatively examined: numbers of crossed floor squares, occurrence frequencies of air and floor sniffing, grooming, rearing, and wall climbing, as well as the incidence of fecal boli. In the open field situation, the males of all formaldehyde groups crossed significantly lower numbers of floor squares. Furthermore, significant decrease in the occurrence frequencies of floor sniffing, rearing, and wall climbing were observed. Within the female rat groups exposed to 0.5 or 5 ppm formaldehyde, a significantly decreased numbers of crossed squares were registered, while this parameter remained unchanged in the 0.1 ppm group. Other parameters were also affected by the formaldehyde inhalation (e.g. significant increase in the occurrence frequencies of air sniffing in the 0.1 and 0.5 ppm groups and significant decrease in the numbers of floor sniffing in the 0.5 and 5 ppm groups, respectively). The incidence of fecal boli was not affected in any exposure group neither in males nor in females. It is concluded from the results obtained that formaldehyde significantly affects the locomotor behavior of adult male and female rats in the open field after a single inhalative exposure to the above mentioned concentrations.  相似文献   

4.
A battery of monitoring tests that could indicate genetic damage was used to investigate occupational formaldehyde exposure in a population of a hospital autopsy service workers. 11 exposed individuals and 11 matched controls were evaluated for sperm count, abnormal sperm morphology and 2F-body frequency. Subjects were matched for sex, age and customary use of alcohol, tobacco and marijuana. Additional information was collected on health, medications and other exposures to toxins. 10 subjects were employed for 4.3 months (range 1-11 months) prior to the first sample and 1 was employed for several years. Formaldehyde exposures were episodic but with a time weighed average between 0.61 and 1.32 ppm (weekly exposure range 3-40 ppm X h). Exposed and control subjects were sampled 3 times at 2-3 month intervals. Sperm morphology was also evaluated in B6C3F1 mice after 5 daily oral doses of 100 mg/kg formalin. No increase in abnormal morphology was detected in the treated animals. In humans, no statistically significant differences were observed between the exposed and control groups for the observed variables. Reduced sperm count correlated with increased abnormal morphology and 2F-body frequency in the exposed group but not in the control group. Evaluation of the impact of incidental exposures suggests a reduced count with marijuana use and increased abnormal morphology with medications used by controls. No effects on sperm were seen from formaldehyde or its metabolites in this population after occupational exposure, nor in mice following a high acute exposure. It is possible that minor effects might have occurred. The lack of an effect in this study may be due to a lack of statistical power to detect effects at this exposure level.  相似文献   

5.
Pulmonary function hyperresponsiveness, defined as enhanced response on reexposure to O3, compared with initial O3 exposure, has been previously noted in consecutive day exposures to high ambient O3 concentrations (i.e., 0.32-0.42 ppm). Effects of consecutive-day exposure to lower O3 concentrations (0.20-0.25 ppm) have yielded equivocal results. To examine the occurrence of hyperresponsiveness at two levels of O3 exposure, 15 aerobically trained males completed seven 1-h exposures of continuous exercise at work rates eliciting a mean minute ventilation of 60 1/min. Three sets of consecutive-day exposures, involving day 1/day 2 exposures to 0.20/0.20 ppm O3, 0.35/0.20 ppm O3, and 0.35/0.35 ppm O3, were randomly delivered via an obligatory mouthpiece inhalation system. A filtered-air exposure was randomly placed 24 h before one of the three sets. Treatment effects were assessed by standard pulmonary function tests, exercise ventilatory pattern (i.e., respiratory frequency, f; and tidal volume, VT) changes and subjective symptom (SS) response. Initial O3 exposures to 0.35 and 0.20 ppm had a statistically significant effect, compared with filtered air, on all measurements. On reexposure to 0.35 ppm O3 24 h after an initial 0.35 ppm O3 exposure, significant hyperresponsiveness was demonstrated for forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), f, VT, and total SS score. Exposure to 0.20 ppm O3 24 h after 0.35 ppm O3 exposure, however, resulted in significantly enhanced responses (compared with initial 0.20 ppm O3 exposure) only for FEV1, f, and VT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Formaldehyde, the recently classified carcinogen and ubiquitous environmental contaminant, has long been suspected of causing adverse reproductive and developmental effects, but previous reviews were inconclusive, due in part, to limitations in the design of many of the human population studies. In the current review, we systematically evaluated evidence of an association between formaldehyde exposure and adverse reproductive and developmental effects, in human populations and in vivo animal studies, in the peer-reviewed literature. The mostly retrospective human studies provided evidence of an association of maternal exposure with adverse reproductive and developmental effects. Further assessment of this association by meta-analysis revealed an increased risk of spontaneous abortion (1.76, 95% CI 1.20-2.59, p=0.002) and of all adverse pregnancy outcomes combined (1.54, 95% CI 1.27-1.88, p<0.001), in formaldehyde-exposed women, although differential recall, selection bias, or confounding cannot be ruled out. Evaluation of the animal studies including all routes of exposure, doses and dosing regimens studied, suggested positive associations between formaldehyde exposure and reproductive toxicity, mostly in males. Potential mechanisms underlying formaldehyde-induced reproductive and developmental toxicities, including chromosome and DNA damage (genotoxicity), oxidative stress, altered level and/or function of enzymes, hormones and proteins, apoptosis, toxicogenomic and epigenomic effects (such as DNA methylation), were identified. To clarify these associations, well-designed molecular epidemiologic studies, that include quantitative exposure assessment and diminish confounding factors, should examine both reproductive and developmental outcomes associated with exposure in males and females. Together with mechanistic and animal studies, this will allow us to better understand the systemic effect of formaldehyde exposure.  相似文献   

7.
The present study examines long-term effects of occupational exposure to formaldehyde fumes on lung function. Forced spirometry and diffusing lung capacity were measured in 16 health-service professionals (8 medical doctors and 8 laboratory technicians) working at the pathoanatomic laboratory for at least 4 years with daily exposure 8 +/- 1 hours. Control group employed 16 males, which were matched by age and stature to members of the exposed group. Only non-smokers were included in the study. Spirometric parameters in study participants exposed to formaldehyde fumes compared to control group were not significantly different indicating absence of restrictive and/or obstructive deterioration of lung function in exposed group. The only parameter differing in two groups was blood volume of pulmonary capillaries (Vc') which was significantly larger in a group exposed to formaldehyde fumes. The possibility that the hyperemic lung reaction is the consequence of the exposure to formaldehyde fumes should be further explored.  相似文献   

8.
The frequencies of micronuclei (MN), histopathological changes and cell proliferation were determined in the nasal epithelium of male Fischer-344 rats after exposure to formaldehyde (FA) by whole-body inhalation for four weeks (6h/day, 5 days/week). Groups of 12 rats each were exposed to the target concentrations of 0, 0.5, 1, 2, 6, 10 and 15ppm. The micronucleus test (MNT) was performed with nasal epithelial cells prepared from six animals per group. Two thousand cells per animal were analysed for the presence of MN. The other six rats per group were subcutaneously implanted with osmotic pumps containing 5-bromo-2'-deoxyuridine (BrdUrd), three days prior to necropsy. Paraffin sections were made from the nasal cavity (four levels) of these animals for histopathology and cell-proliferation measurements. The frequency of cells with MN was not increased in any of the groups. However, there was also no induction of MN in nasal cells of rats exposed to a single dose of cyclophosphamide (CP, 20mg/kg) by gavage and analysed 3, 7, 14 or 28 days after the treatment. In contrast, nasal epithelial cells from rats exposed to 10 or 15ppm FA vapour showed clear site-specific pathological changes (focal epithelial degeneration, inflammation and squamous metaplasia) in a decreasing gradient (anterior to posterior). Analysis of slides after anti-BrdUrd antibody staining clearly indicated increased cell proliferation (unit length labelling indices, ULLI) after exposure to 6ppm and higher. No treatment-related effects were measured after exposure to 0.5, 1 and 2ppm. When comparing the cell-proliferation rate of normal epithelium with that of directly adjacent metaplastic epithelium, no consistent pattern was found: depending on the location, cell proliferation of normal epithelia was either higher or lower. Our results support previous findings demonstrating local cytotoxic effects in the nose of rats after inhalation of FA. However, induction of MN in the nasal epithelium as an indicator of a mutagenic effect was not seen. Because only limited experience exists for the MNT with rat nasal epithelial cells, this result has to be interpreted with great care. The contribution of mutagenicity to FA's carcinogenicity in rat nasal epithelium remains unclear.  相似文献   

9.
In this study, it was aimed to demonstrate the possible oxidative stress caused by exposure of xylene and formaldehyde (HCHO) on liver tissue, and on body and liver weights in adult as well as developing rats. The rats (96 female Sprague-Dawley) were randomly divided into four groups: embryonic day 1 (Group 1), 1-day-old infantile rats (Group 2), 4-week-old rats (Group 3) and adult rats (Group 4). The animals were exposed to gases of technical xylene (300 ppm), HCHO (6 ppm) or technical xylene + HCHO (150 ppm + 3 ppm), 8 hours per day for 6 weeks. Superoxide dismutase (SOD) and catalase (CAT) activities, and glutathione (GSH) and malondialdehyde (MDA) levels were evaluated. In addition, body and liver weights were determinated. Compared to the control animals, body and liver weights were decreased in the embryonic day 1 group (P < 0.001, P < 0.01, respectively) and the 1-day-old infantile group (P < 0.001). Liver weight was increased in the 4-week-old group (P < 0.01). SOD activities were decreased in the 4-week-old rats exposed to HCHO (P < 0.01). CAT activities increased in the embryonic day 1 group (P < 0.05). GSH levels were decreased in the 1-day-old infantile group (P < 0.01), and MDA levels was increased in the embryonic day 1 group (P < 0.05) as compared with the respective control groups. As to GSH and MDA levels in adult and 4-week-old animals, no statistically significant differences were observed (P > 0.05). The present study indicates that exposures to xylene, HCHO and a mixture of them are toxic to liver tissue, and developing female rats are especially more adversely affected. Furthermore, the results of this study show that adult female rats could better tolerate the adverse effects of these toxic gases.  相似文献   

10.
B J Fried 《CMAJ》1986,135(7):733-736
Studies of health effects of urea formaldehyde foam insulation (UFFI) were critically reviewed by means of accepted rules for evidence of causation. Three categories of health effects were examined: reported symptoms, primarily of the upper respiratory tract, lower respiratory tract disease and cancer. Most of the studies purporting to demonstrate health effects of UFFI failed to meet minimal methodologic criteria for evidence of causation. Evidence from the adequate studies provides little support for the hypothesis of a causative role of UFFI in health problems.  相似文献   

11.
Volunteers (10 women, 11 men) were exposed to formaldehyde (FA) vapors for 4h per day over a period of 10 working days under strictly controlled conditions. Exposure varied randomly each day from constant 0.15 ppm up to 0.5 ppm with four peaks of 1.0 ppm for 15 min each (13.5 ppm h cumulative exposure over 10 working days). FA was masked on four days by co-exposure to ethyl acetate. During exposure, subjects had to perform bicycle exercises (about 80 W) three times for 15 min. Buccal smears were prepared 1 week before the start of the study (control 1), at the start of the study before the first exposure (control 2), at the end of the exposure period of 10 days and 7, 14 and 21 days thereafter. Two thousand cells per data point were analyzed for the presence of micronuclei (MN) and the frequency of MN per 1000 cells was determined on slides coded by an independent quality-assurance unit. No significant increase in the frequency of MN was measured at any time point after the end of the exposure. Twenty-one days after the end of the exposure MN frequencies were significantly lower in comparison with control 1. This study, which was performed under GLP-like conditions, clearly indicates that FA does not induce MN in buccal mucosa cells after peak exposures up to 1 ppm and a cumulative exposure of 13.5 ppm h over 2 weeks.  相似文献   

12.
Previous studies of 2 h of exposure to NO2 at high urban atmospheric levels (i.e., 0.50-1.0 ppm), utilizing light-to-moderate exercise for up to 1 h have failed to demonstrate significant pulmonary dysfunction in healthy humans. To test the hypothesis that heavy sustained exercise would elicit pulmonary dysfunction on exposure to 0.60 ppm NO2 and/or enhance the effects of exposure to 0.30 ppm O3, 40 aerobically trained young adults (20 males and 20 females) completed 1 h of continuous exercise at work rates eliciting a mean minute ventilation of 70 and 50 l/min for the males and females, respectively. Exposures to filtered air, 0.60 ppm NO2, 0.30 ppm O3, and 0.60 ppm NO2 plus 0.30 ppm O3 were randomly delivered via an obligatory mouthpiece inhalation system. Treatment effects were assessed by standard pulmonary function tests and exercise ventilatory and subjective symptoms response. Two-way analysis of variance with repeated measures and post hoc analyses revealed a statistically significant (P less than 0.05) effect of O3 on forced expiratory parameters, specific airway resistance, exercise ventilatory response, and reported subjective symptoms of respiratory discomfort. In contrast, no significant effect of NO2 was observed nor was there any significant interaction of NO2 and O3 in combination. There were no significant differences between male and female responses to gas mixture treatments. It was concluded that inhalation of 0.60 ppm NO2 for 1 h while engaged in heavy sustained exercise does not elicit effects evidenced by measurement techniques used in this study nor evoke additive effects beyond those induced by 0.30 ppm O3 in healthy young adults.  相似文献   

13.
BACKGROUND: This study was conducted to evaluate the potential adverse effects of ethylbenzene (EB) on reproductive capability from whole-body inhalation exposure of F0 and F1 parental animals. METHODS: Four groups of Crl:CD(SD)IGS BR rats (30/sex/group for F0 and 25/sex/group for F1) were exposed to 0, 25, 100, and 500 ppm EB for 6 hr/day for at least 70 consecutive days before mating. Inhalation exposure for the F0 and F1 females continued throughout mating, gestation through gestation day (GD) 20, and lactation days (LD) 5-21. On LD 1-4, females received EB in corn oil via oral gavage at dose levels of 26, 90, and 342 mg/kg/day (divided into three equal doses, approximately 2 hr apart), as calculated from a physiologically-based pharmacokinetic (PBPK) model to provide similar maternal blood area-under-concentration (AUC) as provided by inhalation. Pups were weaned on postnatal day (PND) 21 and exposure of the F1 generation started on PND 22. Estimates of internal exposure were determined by measuring EB concentrations in blood collected from F1 dams (4/group) and their culled pups 1 hr after the last gavage dose on PND 4. On PND 22, blood was collected from these same F1 dams and their weanlings for EB analysis 1 hr after a 6-hr inhalation exposure. The remainder of the F2 generation was not directly exposed. RESULTS: EB exposure did not affect survival or clinical observations. Male rats in the 500 ppm group in both generations gained weight more slowly than the controls. There were no indications of adverse effects on reproductive performance in either generation. Male and female mating and fertility indices, pre-coital intervals, spermatogenic endpoints, ovarian follicle counts, reproductive organ weights, lengths of estrous cycle and gestation, live litter size, pup weights, developmental landmarks, and postnatal survival were unaffected. No adverse exposure-related macroscopic pathology was noted at any level. CONCLUSIONS: Increased liver weights were found in the animals exposed to 500 ppm. F1 maternal whole blood EB concentrations of 0.49, 3.51, or 18.28 mg/L were found 1 hr after administration of a composite oral dose of 26, 90, or 342 mg/kg/day, respectively, but no detectable EB was found in blood samples of their F2 PND 4 culled pups. F1 maternal mean whole blood EB levels 1 hr after a 6-hr inhalation exposure on postpartum day (PPD) 22 was 0.11 mg/L (25 ppm), 0.56 mg/L (100 ppm), and 11 mg/L (500 ppm). For the offspring exposed with their dams on PND 22, F2 pup blood EB concentrations ranged from 0.017-0.039 mg/L (25 ppm), 0.165-0.465 mg/L (100 ppm), and 8.82-15.74 mg/L (500 ppm). Because decreased weight gain in the 500 ppm males was transient and no histopathological changes were associated with the increased liver weights in the 500 ppm male and female groups, these changes were not considered adverse. Therefore, for parental systemic toxicity, 100 ppm was considered a NOEL and 500 ppm a NOAEL in this study. The 500 ppm exposure concentration was considered a NOAEL for F0 and F1 reproductive toxicity and offspring developmental endpoints.  相似文献   

14.
Ye X  Yan W  Xie H  Zhao M  Ying C 《Mutation research》2005,588(1):22-27
The evidence for genotoxic potential of formaldehyde (FA) in humans is insufficient and conflicting. We previously reported a higher frequency of micronuclei in nasal and oral exfoliative cells from students exposed to formaldehyde vapor for short-term. To further evaluate the genetic effects of long-term occupational exposure to FA and short-term exposure to FA of indoor sources, the frequencies of micronuclei (MN) in nasal mucosa cells, sister chromatid exchanges (SCEs) of peripheral lymphocytes, and the lymphocyte subsets were evaluated in 18 non-smoking workers (mean exposure duration was 8.6 years) in an FA factory and 16 non-smoking waiters exposed to FA for 12 weeks in a ballroom. A non-smoking student group without occupational exposure (n=23) to FA was used as control. The 8h time-weighted average (TWA) concentrations of formaldehyde was 0.985+/-0.286 mg/m3 with the ceiling exposure concentration of 1.694 mg/m3 in the workshop, and 0.107+/-0.067 mg/m3 in the ballroom (5 h TWA). Higher frequencies of micronuclei per thousand cells in nasal mucosa cells of workers versus control (2.70+/-1.50 versus 1.25+/-0.65, p<0.05) and higher frequency of SCEs in peripheral lymphocytes of workers group (8.24+/-0.89 versus 6.38+/-0.41, p<0.05) were observed. Increased frequency of micronuclei in nasal mucosa cells or SCE in peripheral lymphocytes was not found among waiters group. The results suggest that the genotoxic potential of high level FA exposure may have occupational risks in long-term exposure groups.  相似文献   

15.
This study was conducted to evaluate the potential adverse effects of styrene on reproductive capability from whole-body inhalation exposure of F0 and F1 parental animals. Assessments included gonadal function, estrous cyclicity, mating behavior, conception rate, gestation, parturition, lactation, and weaning in the F0 and F1 generations, and F1 generation offspring growth and development. Four groups of male and female Crl:CD(SD)IGS BR rats (25/sex/group) were exposed to 0, 50, 150, and 500 ppm styrene for 6 hr daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure for the F0 and F1 females continued throughout mating and gestation through gestation day 20. Inhalation exposure of the F0 and F1 females was suspended from gestation day 21 through lactation day 4. On lactation days 1 through 4, the F0 and F1 females received styrene in virgin olive oil via oral gavage at dose levels of 66, 117, and 300 mg/kg/day (divided into three equal doses, approximately 2 hr apart). These oral dosages were calculated to provide similar maternal blood peak concentrations as provided by the inhalation exposures. Inhalation exposure of the F0 and F1 females was re-initiated on lactation day 5. Styrene exposure did not affect survival or clinical observations. Rats in the 150- and 500-ppm groups in both parental generations gained weight more slowly than the controls. There were no indications of adverse effects on reproductive performance in either the F0 or F1 generation. Male and female mating and fertility indices, pre-coital intervals, spermatogenic endpoints, reproductive organ weights, lengths of estrous cycle and gestation, live litter size and postnatal survival were similar in all exposure groups. Additionally, ovarian follicle counts and corpora lutea counts for the F1 females in the high-exposure group were similar to the control values. No adverse exposure-related macroscopic pathology was noted at any exposure level in the F0 and F1 generations. A previously characterized pattern of degeneration of the olfactory epithelium that lines the dorsal septum and dorsal and medial aspects of the nasal turbinates occurred in the F0 and F1 generation animals from the 500-ppm group. In the 500-ppm group, F2 birthweights were reduced compared to the control and F2 offspring from both the 150- and 500-ppm exposure groups gained weight more slowly than the controls. Based on the results of this study, an exposure level of 50 ppm was considered to be the NOAEL for F0 and F1 parental systemic toxicity; the NOAEL for F0 and F1 reproductive toxicity was 500 ppm or greater.  相似文献   

16.
This study was conducted to assess potential adverse functional and/or morphological effects of styrene on the neurological system in the F2 offspring following F0 and F1 generation whole-body inhalation exposures. Four groups of male and female Crl:CD (SD)IGS BR rats (25/sex/group) were exposed to 0, 50, 150, and 500 ppm styrene for 6 hr daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure continued for the F0 and F1 females throughout mating and through gestation day 20. On lactation days 1 through 4, the F0 and F1 females received styrene in virgin olive oil via oral gavage at dose levels of 66, 117, and 300 mg/kg/day (divided into three equal doses, approximately 2 hr apart). Inhalation exposure of the F0 and F1 females was re-initiated on lactation day 5 and continued through weaning of the F1 or F2 pups on postnatal day (PND) 21. Developmental landmarks were assessed in F1 and F2 offspring. The neurological development of randomly selected pups from the F2 generation was assessed by functional observational battery, locomotor activity, acoustic startle response, learning and memory evaluations, brain weights and dimension measurements, and brain morphometric and histologic evaluation. Styrene exposure did not affect survival or the clinical condition of the animals. As expected from previous studies, slight body weight and histopathologic effects on the nasal olfactory epithelium were found in F0 and F1 rats exposed to 500 ppm and, to a lesser extent, 150 ppm. There were no indications of adverse effects on reproductive performance in either the F0 or F1 generation. There were exposure-related reductions in mean body weights of the F1 and F2 offspring from the mid and high-exposure groups and an overall pattern of slightly delayed development evident in the F2 offspring only from the 500-ppm group. This developmental delay included reduced body weight (which continued through day 70) and slightly delayed acquisition of some physical landmarks of development. Styrene exposure of the F0 and F1 animals had no effect on survival, the clinical condition or necropsy findings of the F2 animals. Functional observational battery evaluations conducted for all F1 dams during the gestation and lactation periods and for the F2 offspring were unaffected by styrene exposure. Swimming ability as determined by straight channel escape times measured on PND 24 were increased, and reduced grip strength values were evident for both sexes on PND 45 and 60 in the 500-ppm group compared to controls. There were no other parental exposure-related findings in the F2 pre-weaning and post-weaning functional observational battery assessments, the PND 20 and PND 60 auditory startle habituation parameters, in endpoints of learning and memory performance (escape times and errors) in the Biel water maze task at either testing age, or in activity levels measured on PND 61 in the 500-ppm group. Taken together, the exposure-related developmental and neuromotor changes identified in F2 pups from dams exposed to 500 ppm occurred in endpoints known to be both age- and weight-sensitive parameters, and were observed in the absence of any other remarkable indicators of neurobehavioral toxicity. Based on the results of this study, an exposure level of 50 ppm was considered to be the NOAEL for growth of F2 offspring; an exposure level of 500 ppm was considered to be the NOAEL for F2 developmental neurotoxicity.  相似文献   

17.
The effects of carbon monoxide on exercise tolerance as assessed by the distance walked in 12 minutes were studied in 15 patients with severe chronic bronchitis and emphysema (mean forced expiratory volume in one second 0.56 1, mean forced vital capacity 1.54 1). Each subject walked breathing air and oxygen before and after exposure to sufficient carbon monoxide to raise their venous carboxyhaemoglobin concentration by 9%. There was a significant reduction in the walking distance when the patients breathed air after exposure to carbon monoxide (p less than 0.01), and the significant increase in walking distance seen after exercise when breathing oxygen at 2 1/minute via nasal cannulae was abolished if carbon monoxide has previously been administered. Thus concentrations of carboxyhaemoglobin frequently found in bronchitic patients who smoke may reduce their tolerance of everyday exercise, possibly by interfering with the transport of oxygen to exercising muscles.  相似文献   

18.
BACKGROUND: This study was conducted to evaluate the potential adverse effects of whole-body inhalation exposure of F0 and F1 parental animals from a 2-generation reproduction study of ethylbenzene on nervous system functional and/or morphologic end points in the F2 offspring from four groups of male and female Crl:CD (SD)IGS BR rats. METHODS: Thirty rats/sex/group for F0 and 25/sex/group for F1 were exposed to 0, 25, 100, and 500 ppm ethylbenzene for six hours daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure for the F0 and F1 females continued throughout mating and gestation through Gestation Day (GD) 20. On lactation days (LD) 1-4, the F0 and F1 females received no inhalation exposure, but instead were administered ethylbenzene in corn oil via oral gavage at dosages estimated to result in similar internal maternal exposure based upon PBPK modeling estimates (0, 26, 90, and 342 mg/kg/day, respectively, divided into three equal doses, approximately two hours apart). Inhalation exposure of the F0 and F1 females was reinitiated on LD 5 and continued through weaning on postnatal day (PND) 21. Survival, body weights, and physical landmarks were assessed in selected F2 offspring. Neurobehavioral development of one F2-generation treatment derived offspring/sex/litter was assessed in a functional observational battery (FOB; PND 4, 11, 22, 45, and 60), motor activity sessions (PND 13, 17, 21, and 61), acoustic startle testing (PND 20 and 60), a Biel water maze learning and memory task (initiated on PND 26 or 62), and in evaluations of whole-brain measurements and brain morphometric and histologic assessments (PND 21 and 72). RESULTS: There were no adverse effects on reproductive performance in either the F0 or F1 parental generations exposed to up to 500 ppm ethylbenzene [Faber et al. Birth Defects Res Part B 77:10-21, 2006]. In the current developmental neurotoxicity component, parental ethylbenzene exposure did not adversely affect offspring survival, clinical condition, body weight parameters, or acquisition of developmental landmarks of the F2-generation treatment derived offspring. There were no alterations in FOB parameters, motor activity counts, acoustic startle endpoints, or Biel water maze performance in offspring attributed to parental ethylbenzene exposure. A few isolated instances of statistically significant differences obtained in the treatment-derived groups occurred sporadically, and were attributed to unusual patterns of development and/or behavior in the concurrent control group. There were no exposure-related differences in any neuropathology parameters in the F2-generation treatment derived offspring. CONCLUSIONS: The no observed adverse effect level (NOAEL) for maternal reproductive toxicity, developmental toxicity, and developmental neurotoxicity in this study was considered to be 500 ppm/342 mg/kg/day ethylbenzene, the highest exposure level tested in the study.  相似文献   

19.
Inactivation of laboratory animal RNA-viruses by physicochemical treatment   总被引:1,自引:0,他引:1  
Eight commonly used chemical disinfectants and physical treatments (UV irradiation and heating) were applied to both enveloped RNA viruses (Sendai virus, canine distemper virus) and unenveloped RNA viruses (Theiler's murine encephalomyelitis virus, reo virus type 3) to inactivate infectious virus particles. According to the results, alcohols (70% ethanol, 50% isopropanol), formaldehyde (2% formalin), halogen compounds (52ppm iodophor, 100ppm sodium hypochlorite), quaternary ammonium chloride (0.05% benzalkonium chloride) and 1% saponated cresol showed virucidal effects giving more than 99.95% reduction in the infectivity of virus samples of Sendai virus and canine distemper after 10 minutes exposure. There was no significant difference in the effects on the two enveloped RNA viruses. The susceptibility of unenveloped RNA viruses to chemical disinfectants and physical treatments differed greatly from the enveloped viruses. The two unenveloped viruses showed distinct resistance to 50% isopropanol, 2% formalin, 1% saponated cresol and to physical treatments (heating at 45, 56, 60 degrees C, and UV irradiation). These results indicate that using physicochemical methods to inactivate RNA viruses in laboratory animal facilities should be considered in accordance with the characteristics of the target virus. For practical purposes in disinfecting enveloped RNA viruses, 70% ethanol, 0.05% quaternary ammonium chloride and 1% saponated cresol diluted in hot water (greater than 60 degrees C) are considered as effective as UV irradiation. For unenveloped RNA viruses, halogen compounds, more than 1,000 ppm sodium hypochlorite or 260 ppm iodophor are recommended over a period of 10 minutes for disinfecting particles, although these compounds result in an oxidation problem with many metals.  相似文献   

20.
A study was conducted to evaluate the genotoxic effect of occupational exposure to formaldehyde on pathology and anatomy laboratory workers. The level of exposure to formaldehyde was determined by use of passive air-monitoring badges clipped near the breathing zone of 59 workers for a total sampling time of 15min or 8h. To estimate DNA damage, a chemiluminescence microplate assay was performed on 57 workers before and after a 1-day exposure. Assessment of chromosomal damage was carried out by use of the cytokinesis-blocked micronucleus assay (CBMN) in peripheral lymphocytes of 59 exposed subjects in comparison with 37 controls matched for gender, age, and smoking habits. The CBMN assay was combined with fluorescent in situ hybridization with a pan-centromeric DNA probe in 18 exposed subjects and 18 control subjects randomized from the initial populations. Mean concentrations of formaldehyde were 2.0 (range <0.1-20.4ppm) and 0.1ppm (range <0.1-0.7ppm) for the sampling times of 15min and 8h, respectively. No increase in DNA damage was detected in lymphocytes after a one-workday exposure. However, the frequency of binucleated micronucleated cells was significantly higher in pathologists/anatomists than in controls (16.9 per thousand+/-9.3 versus 11.1 per thousand+/-6.0, P=0.001). The frequency of centromeric micronuclei was higher in exposed subjects than in controls (17.3 per thousand+/-11.5 versus 10.3 per thousand+/-7.1) but the difference was not significant. The frequency of monocentromeric micronuclei was significantly higher in exposed subjects than in controls (11.0 per thousand+/-6.2 versus 3.1 per thousand+/-2.4, P<0.001), while that of the acentromeric micronuclei was similar in exposed subjects and controls (3.7 per thousand+/-4.2 and 4.1 per thousand+/-2.7, respectively). The enhanced chromosomal damage (particularly chromosome loss) in peripheral lymphocytes of pathologists/anatomists emphasizes the need to develop safety programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号