首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
The aim of the present study was to determine whether angiogenic cytokines, which induce neovascularization in the blood vascular system, might also be operative in the lymphatic system. In an assay of spontaneous in vitro angiogenesis, endothelial cells isolated from bovine lymphatic vessels retained their histotypic morphogenetic properties by forming capillary-like tubes. In a second assay, in which endothelial cells could be induced to invade a three-dimensional collagen gel within which they formed tube-like structures, lymphatic endothelial cells responded to basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) in a manner similar to what has previously been observed with endothelial cells derived from the blood vascular system. Finally, since angiogenesis is believed to require extracellular proteolytic activity, we investigated the effects of bFGF and VEGF on lymphatic endothelial cell proteolytic properties by focussing on the plasminogen activator (PA) system. bFGF and VEGF increased urokinase, urokinase receptor, and tissue-type PA expression. This was accompanied by an increase in PA inhibitor-l, which is thought to play an important permissive role in angiogenesis by protecting the extracellular matrix against excessive proteolytic degradation. Taken together, these results demonstrate that with respect to in vitro morphogenetic and proteolytic properties, lymphatic endothelial cells respond to the previously described angiogenic factors, bFGF and VEGF, in a manner very similar to what has been described for endothelial cells derived from the blood vascular system.  相似文献   

3.
Fibroblast growth factors (FGFs) are a family of heparin-binding growth factors. FGFs exert their pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins. Their activity is modulated by a variety of free and extracellular matrix-associated molecules. Also, the cross-talk among FGFs, vascular endothelial growth factors (VEGFs), and inflammatory cytokines/chemokines may play a role in the modulation of blood vessel growth in different pathological conditions, including cancer. Indeed, several experimental evidences point to a role for FGFs in tumor growth and angiogenesis. This review will focus on the relevance of the FGF/FGF receptor system in adult angiogenesis and its contribution to tumor vascularization.  相似文献   

4.
Solid tumors require blood vessels for growth and dissemination, and lymphatic vessels as additional conduits for metastatic spread. The identification of growth factor receptor pathways regulating angiogenesis has led to the clinical approval of the first antiangiogenic molecules targeted against the vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR)-2 pathway. However, in many cases resistance to anti-VEGF-VEGFR therapy occurs, and thus far the clinical benefit has been limited to only modest improvements in overall survival. Therefore, novel treatment modalities are required. Here, we discuss the members of the VEGF-VEGFR family as well as the angiopoietin growth factors and their Tie receptors as potential novel targets for antiangiogenic and antilymphangiogenic therapies.  相似文献   

5.
Basic fibroblast growth factor, a potent angiogenesis inducer, stimulates urokinase (uPA) production by vascular endothelial cells. In both basic fibroblast growth factor-stimulated and -nonstimulated bovine capillary endothelial and human umbilical vein endothelial cells single-chain uPA binding is mediated by a membrane protein with a Mr of 42,000. Exposure of bovine capillary or endothelial human umbilical vein endothelial cells to pmolar concentrations of basic fibroblast growth factor results in a dose-dependent, protein synthesis-dependent increase in the number of membrane receptors for uPA (19,500-187,000) and in a parallel decrease in their affinity (KD = 0.144-0.790 nM). With both cells, single-chain uPA binding is competed by synthetic peptides whose sequence corresponds to the receptor-binding sequence in the NH2-terminal domain of uPA. Exposure of bovine capillary endothelial cells to transforming growth factor beta 1, which inhibits uPA production and upregulates type 1 plasminogen activator inhibitor, the major endothelial cell plasminogen activator inhibitor, has no effect on uPA receptor levels. These results show that basic fibroblast growth factor, besides stimulating uPA production by vascular endothelial cells, also increases the production of receptors, which modulates their capacity to focalize this enzyme on the cell surface. This effect may be important in the degradative processes that occur during angiogenesis.  相似文献   

6.
Inhibition of receptor tyrosine kinases (RTKs) such as vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth factor receptors (PDGFRs) has been validated by recently launched small molecules Sutent® and Nexavar®, both of which display activities against several angiogenesis-related RTKs. EphB4, a receptor tyrosine kinase (RTK) involved in the processes of embryogenesis and angiogenesis, has been shown to be aberrantly up regulated in many cancer types such as breast, lung, bladder and prostate. We propose that inhibition of EphB4 in addition to other validated RTKs would enhance the anti-angiogenic effect and ultimately result in more pronounced anti-cancer efficacy. Herein we report the discovery and SAR of a novel series of imidazo[1,2-a]pyrazine diarylureas that show nanomolar potency for the EphB4 receptor, in addition to potent activity against several other RTKs.  相似文献   

7.
Vascular endothelial growth factors (VEGFs) are a family of secreted polypeptides with a highly conserved receptor-binding cystine-knot structure similar to that of the platelet-derived growth factors. VEGF-A, the founding member of the family, is highly conserved between animals as evolutionarily distant as fish and mammals. In vertebrates, VEGFs act through a family of cognate receptor kinases in endothelial cells to stimulate blood-vessel formation. VEGF-A has important roles in mammalian vascular development and in diseases involving abnormal growth of blood vessels; other VEGFs are also involved in the development of lymphatic vessels and disease-related angiogenesis. Invertebrate homologs of VEGFs and VEGF receptors have been identified in fly, nematode and jellyfish, where they function in developmental cell migration and neurogenesis. The existence of VEGF-like molecules and their receptors in simple invertebrates without a vascular system indicates that this family of growth factors emerged at a very early stage in the evolution of multicellular organisms to mediate primordial developmental functions.  相似文献   

8.
Vascular endothelial growth factors (VEGFs) are a family of secreted polypeptides with a highly conserved receptor-binding cystine-knot structure similar to that of the platelet-derived growth factors. VEGF-A, the founding member of the family, is highly conserved between animals as evolutionarily distant as fish and mammals. In vertebrates, VEGFs act through a family of cognate receptor kinases in endothelial cells to stimulate blood-vessel formation. VEGF-A has important roles in mammalian vascular development and in diseases involving abnormal growth of blood vessels; other VEGFs are also involved in the development of lymphatic vessels and disease-related angiogenesis. Invertebrate homologs of VEGFs and VEGF receptors have been identified in fly, nematode and jellyfish, where they function in developmental cell migration and neurogenesis. The existence of VEGF-like molecules and their receptors in simple invertebrates without a vascular system indicates that this family of growth factors emerged at a very early stage in the evolution of multicellular organisms to mediate primordial developmental functions.  相似文献   

9.
The ephrins and Eph receptors in angiogenesis.   总被引:26,自引:0,他引:26  
Eph receptors are a unique family of receptor tyrosine kinases that play critical roles in embryonic patterning, neuronal targeting, vascular development and adult neovascularization. Engagement of Eph receptors by ephrin ligands mediates critical steps of angiogenesis, including juxtacrine cell-cell contacts, cell adhesion to extracellular matrix, and cell migration. Recent evidence from in vitro angiogenesis assays and analysis of mice deficient for one or more members of the Eph family establishes the role of Eph signaling in sprouting angiogenesis and blood vessel remodeling during vascular development. Furthermore, elevated expression of Eph receptors and ephrin ligands is associated with tumors and associated tumor vasculature, suggesting that Eph receptors and their ephrin ligands also play critical roles in tumor angiogenesis and tumor growth. This review will focus on the relevance of Eph receptor signaling in embryonic and adult neovascularization, and possible contributions to tumor growth and metastasis.  相似文献   

10.
Mechanisms of angiogenesis   总被引:8,自引:0,他引:8  
Tissue activity of angiogenesis depends on the balance of many stimulating or inhibiting factors. The key signaling system that regulates proliferation and migration of endothelial cells forming the basis of any vessel are vascular endothelium growth factors (VEGF) and their receptors. The VEGF-dependent signaling system is necessary for formation of the embryonic vascular system. Neoangiogenesis during tumor growth is also associated with activation of this signaling system. The biological significance of the effect of such system on the cells depends on the content in tissue of various factors of the VEGF family and their receptors, while in the case of VEGFA it is defined by the ratio of different isoforms of this growth factor. A number of other signaling systems are also involved in regulation of the main steps of vessel formation. The signaling system Dll4/Notch regulates selection of endothelial cells for beginning of angiogenic expansion by endowing particular properties to endothelial cells leading in this process. An important step in vessel stabilization and maturation is vascular wall formation. Signaling system PDGFB/PDGFRbeta as well as angiopoietins Ang1, Ang2, and their receptor Tie2 are involved in recruiting mural cells (pericytes and smooth muscle cells). Identification of key molecules involved in the regulation of angiogenesis may provide new possibilities for development of drugs suitable for inhibition of angiogenesis or its stimulation in various pathologies.  相似文献   

11.
The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.  相似文献   

12.
The urokinase system, represented by a plasminogen activator of urokinase type (urokinase, uPA), urokinase receptor (uPAR), and inhibitors of plasminogen activator (PAI-1 and PAI-2), plays an important role in the regulation of vascular wall functioning. Urokinase signaling initiates proteolytic cascade and degradation of the extracellular matrix; and also activates intracellular signaling in vascular cells. This study is the first to reveal a urokinase-mediated fundamental mechanism that regulates the growth trajectory and branching morphogenesis of blood vessels. This mechanism may be of particular importance during vessel growth in early embryogenesis and in the adult during tissue regeneration.  相似文献   

13.
Vascular endothelial growth factor and its receptors   总被引:2,自引:0,他引:2  
Vascular endothelial growth factor (VEGF) is a prime regulator of endothelial cell proliferation, angiogenesis, vasculogenesis and vascular permeability. Its activity is mediated by the high affinity tyrosine kinase receptors, KDR/Flk-1 and Flt-1. In this article, recently discovered structural, molecular and biological properties of VEGF are described. Among the topics discussed are VEGF and VEGF receptor structure and bioactivity, the regulation of VEGF expression, the role of VEGF and its receptors in vascular development, and the involvement of VEGF and its receptors in normal and pathological (ocular and tumor) angiogenesis.  相似文献   

14.
多项动物实验和临床实啦已经充分证实,抗血管生成疗法可以抑制肿瘤生长。在可抑制肿瘤生长的分子中,许多是蛋白与多肽,包括细胞因子、趋化因子、血管内皮生长因子及其受体的抗体、可溶性受体、胞外基质蛋白片段及小分子合成多肽等。简要综述其中部分分子的作用机理及临床应用情况。  相似文献   

15.
Antiangiogenic molecules exert a feedback control to restrain pathological angiogenesis, which includes physical binding or inhibition of angiogenic signaling in blood vessel endothelial cells. The latter is the case in which Slit2 ligand-dependent activation of the blood vessel endothelial cell receptor roundabout 4 (Robo4) occurs. In this study, we demonstrate that Robo4 receptors are upregulated following HSV infection of the eye on the majority of the new blood vessel endothelial cells that occur in the corneal stroma. However, expression levels of the ligand for Robo4 receptors, Slit2, was not significantly increased during the disease process, and the knockdown of Slit2 gene expression using lentiviral short hairpin RNAs had no effect on the extent of pathological angiogenesis. In contrast, providing additional Slit2 protein by subconjunctival administration resulted in significantly reduced angiogenesis. The Slit2 binding to Robo4 was shown to block the downstream vascular endothelial growth factor signaling molecules Arf 6 and Rac 1 and reduce the antiapoptotic molecule Bcl-xL in blood vessel endothelial cells. Our results indicate that augmenting the host Robo4/Slit2 system could provide a useful therapeutic approach to control pathological angiogenesis associated with HSV induced stromal keratitis.  相似文献   

16.
The vasculature is a highly specialized organ that functions in a number of key physiological tasks including the transport of oxygen and nutrients to tissues. Formation of the vascular system is an essential and rate-limiting step in development and occurs primarily through two main mechanisms, vasculogenesis and angiogenesis. Both vasculogenesis, the de novo formation of vessels, and angiogenesis, the growth of new vessels from pre-existing vessels by sprouting, are complex processes that are mediated by the precise coordination of multiple cell types to form and remodel the vascular system. A host of signaling molecules and their interaction with specific receptors are central to activating and modulating vessel formation. This review article summarizes the current state of research involving signaling molecules that have been demonstrated to function in the regulation of vasculogenesis and angiogenesis, as well as molecules known to play a role in vessel maturation, hypoxia-driven angiogenesis and arterial-venous specification.  相似文献   

17.
The growth and metastases of many solid tumors are dependent on the recruitment of new blood vessels. Tumor angiogenesis is most likely initiated by paracrine release of growth factors that bind to their corresponding endothelial cell surface receptors. To determine whether angiogenesis and growth factor receptor expression are consistent findings in malignant melanoma, primary human melanomas were examined for mRNA expression of receptors for fibroblast growth factors (FGFR-1, FGFR-2), vascular endothelial growth factor (VEGFR-1, VEGFR-2), and the receptors Tiel and Tie2. Charts were reviewed and archival formalin-fixed, paraffin-embedded primary tumors were obtained from patients with thin (<1 mm; n = 10), intermediate (1 to 4 mm; n = 10), or thick malignant melanoma (>4 mm; n = 8). Also examined was whether melanoma cell lines could induce endothelial growth factor receptor synthesis by metabolic labeling. It was found that tumor vascularity did not correlate with clinical stage, melanoma thickness, or clinical outcome. It was also found that melanoma cell lines were not capable of directly regulating endothelial cell synthesis of growth factor receptors. However, expression of Tiel and VEGFR-2 mRNA by the tumor vasculature in select stage IA-IIB patients, and FGFR-1 mRNA expression by the tumor cells in the same clinical stages was found. The expression of these growth factor receptors did not correlate with clinical outcome. These data suggest that angiogenesis is not a prominent characteristic of primary malignant melanoma lesions and that the endothelial cell expression of Tiel and VEGFR-2 in vivo is probably not directly induced by the tumor.  相似文献   

18.
The interaction of the vascular endothelial growth factor (VEGF) with its cellular receptors exerts a central role in the regulation of angiogenesis. Among these receptors, the VEGF receptor 1 may be implicated in pathological angiogenesis. Here, we report the first total chemical synthesis of the VEGF‐binding domain of the VEGF receptor 1. Aggregation issues were overcome by the use of a low‐substituted resin and the stepwise introduction of pseudoproline dipeptides and Dmb‐glycines. The folding of the protein was achieved by air oxidation and its biological activity was verified on ELISA‐based assays. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The vascular endothelial growth factor (VEGF) family belong to the platelet‐derived growth factor supergene family and is involved in angiogenesis and mitogenesis. The VEGF–VEGFR system regulates endothelial cell proliferation, migration, vascular permeability, secretion and other non‐endothelial cells functions. To clarify the possible role of endothelial and non‐endothelial cells, VEGF and its receptors, vascular endothelial cell growth inhibitor (VEGI) were immunohistochemically examined in oropharyngeal organs. Ten adult partridges were used in this study and the pharynx and larynx were dissected together with the palate and tongue. VEGI, VEGF and its receptor were highly expressed in luminal epithelial and stromal cells, when compared to glandular epithelial and muscle cells (P < 0.05). Moreover, VEGF, its receptors and VEGI were expressed rather strongly in the endothelial cells of the blood capillaries and in both the endothelial and smooth muscle cells of the large and small blood vessels. In conclusion, VEGF and its receptors (flt1/fms, flk1/KDR and flt4) and VEGI were expressed by various cell groups at varying intensity in the oropharyngeal organs. This demonstrates that they play a critical role in the regulation and maintenance of the functions in cells different from endothelial ones as well as in cell proliferation, differentiation, apoptosis and angiogenesis.  相似文献   

20.
Angiogenesis plays a central role in a variety of important biological processes such as reproduction, tissue development, and wound healing, as well as being critical to tumor formation in cancer. The development of chromosomal substitution (consomic) rat strains has permitted the chromosomal localization of genetic factors critical to angiogenesis, but many questions remain as to the mechanisms involved. Here we utilize a novel cell capture assay to assess changes in the functional expression of vascular endothelial growth factor (VEGF) receptors on the surface of vascular endothelial cells isolated from rat strains that are normal or impaired in angiogenesis. We show that functional VEGF receptor expression is increased under hypoxic conditions in rat strains that exhibit normal angiogenesis but not in a strain impaired in angiogenesis. This result implicates the dysregulation of VEGF receptor expression levels on the endothelial cell surface as a key factor in impaired angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号