首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the T-cell receptor (TCR) repertoire of CD8(+) T cells that recognize the Tax11-19 immunodominant epitope of Tax protein expressed by human T-cell leukemia virus (HTLV-1) that is implicated in the disease HTLV-1-associated myelopathy (HAM/TSP). A panel of Tax11-19-reactive CD8(+) T-cell clones was generated by single-cell cloning of Tax11-19/HLA-A*0201 tetramer-positive peripheral blood lymphocytes from an HTLV-1-infected individual. The analyses of TCR usage revealed that the combination of diverse TCR alpha and beta chains could be used for the recognition of Tax11-19 but the major population of T-cell clones (15 of 24 clones) expressed the TCR V beta 13S1 and V alpha 17 chain. We found striking similarities in CDR3 regions of TCR alpha and beta chains between our major group of CD8(+) T-cell clones and those originating from different subjects as previously reported, including TCRs with resolved crystal structures. A 3-amino-acid sequence (PG-G) in the CDR3 region of the V beta chain was conserved among all the Tax11-19-reactive T-cell clones expressing V beta 13S1 and V alpha 17 chains. Conserved amino acids in the CDR3 region do not directly contact the Tax11-19 peptide, as corroborated by the crystal structure of B7-TCR, a TCR that is almost identical to VB13S1 clones isolated in this study. Analysis of fine peptide specificity using altered peptide ligands (APL) of Tax11-19 revealed a similar recognition pattern among this panel of T-cell clones. These data suggest that the PG-G amino acids in the CDR3 beta loop provide a structural framework necessary for the maintenance of the tertiary TCR structure.  相似文献   

2.
Detailed assessment of how the structural properties of T cell receptors affect clonal repertoires of Ag-specific cells is a prerequisite for a better understanding of human antiviral immunity. Herein we examine the alpha TCR repertoires of CD8 T cells reactive against the influenza A viral epitope M1(58-66), restricted by HLA-A2.1. Using molecular cloning, we systematically studied the impact of alpha-chain usage in the formation of T cell memory and revealed that M1(58-66)-specific, clonally diverse VB19 T cells express alpha-chains encoded by multiple AV genes with different CDR3 sizes. A unique feature of these alpha TCRs was the presence of CDR3 fitting to an AGA(G(n))GG-like amino acid motif. This pattern was consistent over time and among different individuals. Further molecular assessment of human CD4(+)CD8(-) and CD4(-)CD8(+) thymocytes led to the conclusion that the poly-Gly/Ala runs in CDR3alpha were a property of immune, but not naive, repertoires and could be attributed to influenza exposure. Repertoires of T cell memory are discussed in the context of clonal diversity, where poly-Gly/Ala runs in the CDR3 of alpha- and beta-chains might provide high levels of TCR flexibility during Ag recognition while gene-encoded CDR1 and CDR2 contribute to the fine specificity of the TCR-peptide MHC interaction.  相似文献   

3.
BACKGROUND: Sarcoidosis is a granulomatous disease characterized by the accumulation of activated T cells in the lungs. We previously showed that sarcoidosis patients expressing the HLA haplotype DR3(17),DQ2 had increased numbers of lung CD4+ T cells using the T cell receptor (TCR) variable region (V) alpha 2.3 gene segment product. In the present study, the composition of both the TCR alpha- and beta-chains of the expanded CD4+ lung T cells from four DR3(17),DQ2+ sarcoidosis patients was examined. MATERIALS AND METHODS: TCR alpha-chains were analyzed by cDNA cloning and nucleotide sequencing. TCR beta-chains were analyzed for V beta usage by flow cytometry using TCR V-specific monoclonal antibodies or by the polymerase chain reaction (PCR) using V beta- and C beta-specific primers. J beta usage was analyzed by Southern blotting of PCR products and subsequent hybridization with radiolabeled J beta-specific probes. RESULTS: Evidence of biased J alpha gene segment usage by the alpha-chains of V alpha 2.3+ CD4+ lung T cells was found in four out of four patients. Both different alpha-chain nucleotide sequences coding for identical amino acid sequences and a number of identically repeated alpha-chain sequences were identified. In contrast, the TCR beta-chains of FACS-sorted V alpha 2.3+ CD4+ lung T cells were found, with one exception, to have a nonrestricted TCR V beta usage. CONCLUSIONS: The finding of V alpha 2.3+ CD4+ lung T cells with identical TCR alpha-chain amino acid sequences but with different nucleotide sequences strongly suggests that different T cell clones have been selected to interact with a specific sarcoidosis associated antigen(s). The identification of T cells with restricted TCR usage, which may play an important role in the development of sarcoidosis, and the possibility of selectively manipulating these cells should have important implications for the treatment of the disease.  相似文献   

4.
The biosynthesis, processing, and assembly of the TCR alpha- and beta-chains with each other and with the CD3 complex were investigated on both cell surface positive (TCR+CD3-) and negative (TCR-CD3-) cell lines. The results indicate that 1) in cell surface TCR-CD3- cell lines (MOLT 3, CCRF-CEM), TCR-beta, but not alpha-chains are present intracellularly. TCR-beta-CD3 complexes are readily found in these cell lines, but no evidence for final processing or cell surface expression of such incomplete TCR-CD3 complexes is observed. 2) In the cell surface TCR+CD3+ cell line HPB-ALL, both alpha- and beta-chains are present intracellularly. Whereas non-glycosylated forms of TCR-beta chain can be detected, only more mature forms of TCR alpha-chains are detected indicating that the alpha-chains are more rapidly glycosylated than the beta-chains. 3) The large majority of the intracellular alpha- and beta-chains is not disulfide linked and a small fraction of these is associated with CD3. 4) Only small amounts of the total intracellular TCR chains are found as CD3-associated disulfide-linked alpha beta-heterodimers. 5) Final processing of TCR chains for cell surface expression takes place after formation of these TCR-alpha beta-CD3 complexes. Thus, both the TCR alpha- and beta-chains are over-produced and only relatively small amounts of these chains form CD3-associated heterodimers that are processed for cell surface expression. Analogous results were obtained with a non-leukemic CTL clone. Based on these observations, a model for the biosynthesis and assembly of the TCR-CD3 complex is presented.  相似文献   

5.
Some TCR variable regions are preferentially expressed in CD4+ or CD8+ T cells, reflecting a predilection for interacting with MHC class II or class I molecules. The molecular basis for MHC class bias has been studied previously, in particular for V alpha 3 family members, pointing to a dominant role for two amino acid positions in complementary-determining regions (CDRs) 1 and 2. We have evaluated the generality of these findings by examining the MHC class bias of V alpha 2 family members, an attractive system because it shows more variability within the CDR1 and -2, exhibits variation in the framework regions, and includes a member for which the crystal structure has been determined. We find that preferential recognition of MHC class I or II molecules does not always depend on residues at the same positions of CDR1 and -2; rules for one family may be reversed in another. Instead, there are multiple influences exerted by various CDR1/2 positions as well as the CDR3s of both the TCR alpha- and TCR beta-chains.  相似文献   

6.
7.
We have used cloned T cell receptor (TCR) genes from closely related CD4 T cell lines to probe the interaction of the TCR with several specific major histocompatibility complex (MHC) class II ligands. Complementarity determining region 3 (CDR3) equivalents of both alpha and beta TCR chains are required for antigen-MHC recognition. Our data provide novel information about the rotational orientation of TCR-MHC contacts in that exchange of the amino terminal portion of the TCR alpha chain containing the putative CDR1 and CDR2 regions results in both gain and loss of MHC class II specificity by the resulting receptor. These two TCRs differ primarily in recognition of polymorphisms in the second hypervariable region of the MHC class II alpha chain. These results document the involvement of CDR1 and/or CDR2 of the TCR alpha chain in MHC recognition and suggest a rotational orientation of this TCR to its MHC ligand.  相似文献   

8.
CD1d-restricted NKT cells use structurally conserved TCRs and recognize both self and foreign glycolipids, but the TCR features that determine these Ag specificities remain unclear. We investigated the TCR structures and lipid Ag recognition properties of five novel Valpha24-negative and 13 canonical Valpha24-positive/Vbeta11-positive human NKT cell clones generated using alpha-galactosylceramide (alpha-GalCer)-loaded CD1d tetramers. The Valpha24-negative clones expressed Vbeta11 paired with Valpha10, Valpha2, or Valpha3. Strikingly, their Valpha-chains had highly conserved rearrangements to Jalpha18, resulting in CDR3alpha loop sequences that are nearly identical to those of canonical TCRs. Valpha24-positive and Valpha24-negative clones responded similarly to alpha-GalCer and a closely related bacterial analog, suggesting that conservation of the CDR3alpha loop is sufficient for recognition of alpha-GalCer despite CDR1alpha and CDR2alpha sequence variation. Unlike Valpha24-positive clones, the Valpha24-negative clones responded poorly to a glucose-linked glycolipid (alpha-glucosylceramide), which correlated with their lack of a conserved CDR1alpha amino acid motif, suggesting that fine specificity for alpha-linked glycosphingolipids is influenced by Valpha-encoded TCR regions. Valpha24-negative clones showed no response to isoglobotrihexosylceramide, indicating that recognition of this mammalian lipid is not required for selection of Jalpha18-positive TCRs that can recognize alpha-GalCer. One alpha-GalCer-reactive, Valpha24-positive clone differed from the others in responding specifically to mammalian phospholipids, demonstrating that semi-invariant NKT TCRs have a capacity for private Ag specificities that are likely conferred by individual TCR beta-chain rearrangements. These results highlight the variation in Ag recognition among CD1d-restricted TCRs and suggest that TCR alpha-chain elements contribute to alpha-linked glycosphingolipid specificity, whereas TCR beta-chains can confer heterogeneous additional reactivities.  相似文献   

9.
The TCR on CD4 T cells binds to and recognizes MHC class II:antigenic peptide complexes through molecular contacts with the peptide amino acid residues that face up and out of the peptide-binding groove. This interaction primarily involves the complementarity-determining regions (CDR) of the TCR alpha- and ss-chains contacting up to five residues of the peptide. We have used two TCRs that recognize the same antigenic peptide and have identical Vss8.2 chains, but differ in all three CDR of their related Valpha2 chains, to examine the fine specificity of the TCR:peptide contacts that lead to activation. By generating a peptide library containing all 20 aa residues in the five potential TCR contact sites, we were able to demonstrate that the two similar TCRs responded differentially when agonist, nonagonist, and antagonist peptide functions were examined. Dual substituted peptides containing an agonist residue at the N terminus, which interacts with CDR2alpha, and an antagonist residue at the C terminus, which interacts with the CDR3ss, were used to show that the nature of the overall signal through the TCR is determined by a combination of the type of signal received through both the TCR alpha- and ss-chains.  相似文献   

10.
T cell responses to myelin basic protein (MBP) are potentially involved in the pathogenesis of multiple sclerosis (MS). Immunization with irradiated MBP-reactive T cells (T cell vaccination) induces anti-idiotypic T cell responses that suppress circulating MBP-reactive T cells. This T cell-T cell interaction is thought to involve the recognition of TCR expressed on target T cells. The study was undertaken to define the idiotypic determinants responsible for triggering CD8+ cytotoxic anti-idiotypic T cell responses by T cell vaccination in patients with MS. A panel of 9-mer synthetic TCR peptides corresponding to complementarity-determining region 2 (CDR2) and CDR3 of the immunizing MBP-reactive T cell clones were used to isolate anti-idiotypic T cell lines from immunized MS patients. The resulting TCR-specific T cell lines expressed exclusively the CD8 phenotype and recognized preferentially the CDR3 peptides. CDR3-specific T cell lines were found to lyze specifically autologous immunizing MBP-reactive T cell clones. The findings suggest that CDR3-specific T cells represented anti-idiotypic T cell population induced by T cell vaccination. In contrast, the CDR2 peptides were less immunogenic and contained cryptic determinants as the CDR2-specific T cell lines did not recognize autologous immunizing T cell clones from which the peptide sequence was derived. The study has important implications in our understanding of in vivo idiotypic regulation of autoimmune T cells and the regulatory mechanism underlying T cell vaccination.  相似文献   

11.
Valve lesions in degenerative calcific aortic stenosis (CAS), a disorder affecting 3% of those older than 75 years, are infiltrated by T lymphocytes. We sought to determine whether the alphabeta TCR repertoire of these valve-infiltrating lymphocytes exhibited features either of a polyclonal nonselective response to inflammation or contained expanded clones suggesting a more specific immune process. TCR beta-chain CDR3-length distribution analysis using PCR primers specific for 23 Vbeta families performed in eight individuals with CAS affecting tri- or bileaflet aortic valves revealed considerable oligoclonal T cell expansion. In five cases, beta-chain nucleotide sequencing in five selected Vbeta families showed that an average of 92% of the valve-infiltrating T cell repertoire consisted of expanded T cell clones, differing markedly in composition from the relatively more polyclonal peripheral CD8 or CD4 T cell subsets found even in this elderly population. Twenty-four of the valve-infiltrating T cell clones also had the same clone identified in blood, some of which were highly expanded. Interestingly, 22 of these 24 shared clones were CD8 in lineage (p = 1.5 x 10(-12)), suggesting a possible relationship to the expanded CD8(+)CD28(-) T cell clones frequently present in the elderly. Additionally, the sequences of several TCR beta-chain CDR3 regions were homologous to TCR beta-chains identified previously in allograft arteriosclerosis. We infer that these findings are inconsistent with a nonselective secondary response of T cells to inflammation and instead suggest that clonally expanded alphabeta T cells are implicated in mediating a component of the valvular injury responsible for CAS.  相似文献   

12.
In an attempt to provide a global picture of the TCR repertoire diversity of a chronic T cell response against a common Ag, we performed an extensive TCR analysis of cells reactive against a dominant HLA-A2-restricted EBV epitope (hereafter referred to as GLC/A2), obtained after sorting PBL or synovial fluid lymphocytes from EBV-seropositive individuals using MHC/peptide multimers. Although TCR beta-chain diversity of GLC/A2+ T cells was extensive and varied greatly from one donor to another, we identified in most cell lines several recurrent Vbeta subsets (Vbeta2, Vbeta4, and Vbeta16 positive) with highly conserved TCRbeta complementarity-determining region 3 (CDR3) length and junctional motifs, which represented from 11 to 98% (mean, 50%) of GLC/A2-reactive cells. While TCR beta-chains expressed by these subsets showed limited CDR1, CDR2, and CDR3 homology among themselves, their TCR alpha-chains comprised the same TCRAV region, thus suggesting hierarchical contribution of TCR alpha-chain vs TCR beta-chain CDR to recognition of this particular MHC/peptide complex. The common occurrence of T cell clonotypes with public TCR features within GLC/A2-specific T cells allowed their direct detection within unsorted PBL using ad hoc clonotypic primers. These results, which suggest an unexpectedly high contribution of public clonotypes to the TCR repertoire against a dominant epitope, have several implications for the follow-up and modulation of T cell-mediated immunity.  相似文献   

13.
The crystal structures of the Vbeta17+ beta chains of two human T cell receptors (TCRs), originally derived from the synovial fluid (SF4) and tissue (C5-1) of a patient with rheumatoid arthritis (RA), have been determined in native (SF4) and mutant (C5-1(F104-->Y/C187-->S)) forms, respectively. These TCR beta chains form homo-dimers in solution and in crystals. Structural comparison reveals that the main-chain conformations in the CDR regions of the C5-1 and SF4 Vbeta17 closely resemble those of a Vbeta17 JM22 in a bound form; however, the CDR3 region shows different conformations among these three Vbeta17 structures. At the side-chain level, conformational differences were observed at the CDR2 regions between our two ligand-free forms and the bound JM22 form. Other significant differences were observed at the Vbeta regions 8-12, 40-44, and 82-88 between C5-1/SF4 and JM22 Vbeta17, implying that there is considerable variability in the structures of very similar beta chains. Structural alignments also reveal a considerable variation in the Vbeta-Cbeta associations, and this may affect ligand recognition. The crystal structures also provide insights into the structure basis of T cell recognition of Mycoplasma arthritidis mitogen (MAM), a superantigen that may be implicated in the development of human RA. Structural comparisons of the Vbeta domains of known TCR structures indicate that there are significant similarities among Vbeta regions that are MAM-reactive, whereas there appear to be significant structural differences among those Vbeta regions that lack MAM-reactivity. It further reveals that CDR2 and framework region (FR) 3 are likely to account for the binding of TCR to MAM.  相似文献   

14.
T cell responses against hapten-modified peptides play an important role in the pathogenesis of certain diseases, including contact dermatitis and allergy. However, the structural features of TCRs recognizing bulky, potentially mobile hapten groups remain poorly defined. To analyze the structural basis of TCR recognition of defined hapten-modified peptides, the immunodominant octapeptide derived from vesicular stomatitis virus nucleoprotein (VSV8) was modified with a trinitrophenyl (TNP) group at the primary TCR contact residues (position 4 or 6) and used for immunization of mice carrying either the TCR alpha- or beta-chain of a VSV8 (unmodified)/H-2K(b)-specific CTL clone as a transgene. Such mice allow independent analysis of one TCR chain by maintaining the other fixed. The TCR V gene usage of the responding T cell population was specifically altered depending upon the presence of the TNP group and its position on the peptide. The CDR3 sequences of the TNP-modified peptide-specific TCRs showed a preferential J region usage in both the CDR3alpha and beta loops, indicating that the J regions of both CDR3s are critical for recognition of TNP-modified peptides. In contrast to our previous observations showing the prime importance of CDR3beta residues encoded by D-segment or N-addition nucleotides for recognition of position 6 of unmodified VSV8, our studies of TNP-modified peptides demonstrate the importance of the Jbeta region, while the Jalpha region was crucial for recognizing both TNP-modified and unmodified peptides. These data suggest that different structural strategies are utilized by the CDR3alpha and beta loops to allow interaction with a haptenated peptide.  相似文献   

15.
In the Lewis rat, the encephalitogenic determinant of myelin basic protein (MBP), residues 68 to 88, induces an alpha beta + T cell population whose TCR beta-chains are exclusively derived from the V beta 8 TCR gene family. As presented here, sequencing of these beta-chains has revealed the following. 1) There is an absolute restriction to a single V beta 8 family member, previously identified as V beta 8.2. This V region is used by only 10% of the V beta 8+ TCR found in normal unprimed mesenteric and cervical lymph node T cell populations. 2) There is a serine at residue 97 (in the CDR3 region of the beta-chain) which appears to be Ag-specific and is not found in normal populations of adult T cells. 3) There is a size restriction of these MBP-specific beta-chains, resulting from the addition and deletion of nucleotides in the CDR3 region, which tend to cancel each other out. 4) There is a paucity of N-region nucleotide additions in the J region of these MBP-specific beta-chains. Such a reduced number of nontemplate-added nucleotides has been associated with receptors that rearrange early during development and fail to add nucleotides due to a lack of terminal deoxynucleotidyl transferase at that time. These results have led us to propose that the selection of MBP-reactive autoimmune T cells is based on both the Ag and the time frame when these cells are generated and enter the peripheral T cell pool.  相似文献   

16.
Ag recognition by most T lymphocytes is mediated by clonally distributed alpha beta heterodimeric receptors. A major fraction of TCR diversity is believed to be due to the random coexpression in individual T cells of the products of independently rearranging alpha- and beta-genes (combinatorial diversity). However, analysis of cell surface receptors on transfected T hybridoma cells synthesizing various sets of alpha- and beta-chains revealed marked differences in the efficiency of expression of certain alpha beta-pairs. Specifically, using the functionally rearranged gene products of the 2B4 cytochrome c specific T hybridoma (V beta 3, V alpha 11.2) and BW5147 parent lymphoma (V beta 1, V alpha BW), a hierarchy of expression efficiency relative to indirectly measured precursor chain levels in the cell was shown to be 2B4 alpha-BW beta greater than 2B4 alpha - 2B4 beta greater than BW alpha - BW beta greater than BW alpha - 2B4 beta. The estimated difference between the best expressed and worst expressed pairs is on the order of 50-fold. For the beta-chain, the primary determinant of expression efficiency with a given alpha-chain appears to be the V segment, as a second V beta 1-chain with distinct D and J regions from BW beta was expressed with the same pattern. These data imply that alpha- and beta-chains do not form well-expressed TCR in a random manner and that limitations on the useful combinatorial association of these chains may significantly affect the functional T cell repertoire.  相似文献   

17.
Heterogeneity of V alpha 1+ and V beta 10+ TCR alpha beta-chains, which are predominantly used in anti-FBL-3 CTL clones established in vitro, was investigated at a nucleotide level in FBL-3 tumor-infiltrating lymphocytes (TIL) in vivo. The majority (90%) of V beta 10+ beta-chains dominated in TIL used homogeneous V beta 10D beta 2.1 sequences identical to that used in the T cell clones with cytotoxic functions. The homogeneous TCR beta-chain expression was dominant and found to be about 10% of the total TCR beta-chains in the TIL population, which was a greater than 300-to 900-fold increase than in the regional lymph nodes. This is in good agreement with the in vitro data showing that about 11% CTL clones used the homogeneous V beta 10D beta 2.1+ beta-chain. However, the J beta segment does not seem to contribute greatly to the recognition and selection of this TCR because some of homogeneous VD+ beta-chains were associated with J beta segments other than J beta 2.7 of the CTL clones. The frequency of the V alpha 1J alpha 112-2+ alpha-chain expression of the CTL type was much less (3- to 80-fold increase compared to that of lymph node) and also varied in sample materials, indicating the lower contribution of the alpha-chain for the oligoclonality of the TCR. The results were also confirmed by quantitative PCR and RNase protection assays. This suggests that the dominant expression of the homogeneous TCR beta-chain is due to the expansion of the particular anti-FBL-3 CTL in the tumor in situ. Also, the TCR beta-chain, especially the V beta D beta region, rather than alpha-chain is more important for the recognition and selection of the anti-FBL-3 TIL with cytotoxic functions.  相似文献   

18.
Lymphoid oncogenesis is a life threatening complication associated with a number of persistent viral infections (e.g. EBV and HTLV-1 in humans). With many of these infections it is difficult to study their natural history and the dynamics of tumor formation. Marek's Disease Virus (MDV) is a prevalent α-herpesvirus of poultry, inducing CD4+ TCRαβ+ T cell tumors in susceptible hosts. The high penetrance and temporal predictability of tumor induction raises issues related to the clonal structure of these lymphomas. Similarly, the clonality of responding CD8 T cells that infiltrate the tumor sites is unknown. Using TCRβ repertoire analysis tools, we demonstrated that MDV driven CD4+ T cell tumors were dominated by one to three large clones within an oligoclonal framework of smaller clones of CD4+ T cells. Individual birds had multiple tumor sites, some the result of metastasis (i.e. shared dominant clones) and others derived from distinct clones of transformed cells. The smaller oligoclonal CD4+ cells may represent an anti-tumor response, although on one occasion a low frequency clone was transformed and expanded after culture. Metastatic tumor clones were detected in the blood early during infection and dominated the circulating T cell repertoire, leading to MDV associated immune suppression. We also demonstrated that the tumor-infiltrating CD8+ T cell response was dominated by large oligoclonal expansions containing both "public" and "private" CDR3 sequences. The frequency of CD8+ T cell CDR3 sequences suggests initial stimulation during the early phases of infection. Collectively, our results indicate that MDV driven tumors are dominated by a highly restricted number of CD4+ clones. Moreover, the responding CD8+ T cell infiltrate is oligoclonal indicating recognition of a limited number of MDV antigens. These studies improve our understanding of the biology of MDV, an important poultry pathogen and a natural infection model of virus-induced tumor formation.  相似文献   

19.
The T-cell receptor (TCR) BV gene of human TCR AV24+ double-negative (DN) T cells, a novel subset of natural killer (NK) T cells, was investigated by single-cell sorting and single-cell polymerase chain reaction (PCR) methods. Seven of eleven TCR AV24+ DN T-cell clones utilized TCR BV8, three BV9, and one BV6. Six of seven TCR AV24/BV8+ DN T-cell clones had identical TCR beta and alpha chains, indicating that they were the same clone. All three TCR AV24/BV9+ DN T-cell clones also demonstrated the same amino acids in the CDR3 region. These findings strongly suggest that the usage of TCR beta and alpha chains on TCR AV24+ DN T cells is extremely restricted, supporting the notion that these cells recognize highly limited T-cell epitopes on antigens. All TCR AV24+ clones expressed the NKR-P1A mRNA, and so were true NK T cells. IL-2 and IL-4 mRNAs were detected in all clones, suggesting that the majority of these cells were Th0-type T cells. Six clones overexpressed Fas-ligand (Fas-L) mRNA and Fas antigen was detected on all clones at the mRNA level. In conclusion, TCR AV24+ DN T cells might recognize restricted T-cell epitopes on antigens and function as Th0-type T cells, inducer cells to Th1- or Th2-type T cells (regulatory T cells), and as Fas-L-positive cytolytic T cells.  相似文献   

20.
Transplantation of histoincompatible tissues leads to allograft rejection, which involves recognition of allogeneic MHC molecules by Ag-specific receptors expressed on T cells. The interaction of these molecules is highly specific yet poorly understood. We have investigated the relationship between TCR gene utilization and allo-MHC restriction patterns by using a one-way polymerase chain reaction to amplify the alpha- and beta-chain mRNA from a panel of 10 HLA-DR1-alloreactive T lymphocyte clones. Two previously unreported V alpha and five J alpha gene sequences were obtained. Although a few V alpha, V beta, and J alpha genes were utilized more than once, no correlation between TCR gene usage and DR1 alloreactivity was identified. At the sequence level, the presumed TCR alpha- and beta-chain CDR1 and CDR2 regions displayed limited diversity, whereas the CDR3 or junctional sequences were highly variable. Although most TCR probably interact with subtly different surface features of the DR1 alloantigen, we predict that TCR with similar CDR1 and CDR2 sequences would contact essentially identical regions of the DR1 molecule. The lack of sequence conservation in the junctional regions suggests that different endogenous peptides also may be recognized. Thus, alloreactive T cells may recognize not only allogeneic MHC molecules but perhaps also bound endogenous peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号