首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Purified nicotinamide-nucleotide transhydrogenase from beef heart mitochondria was co-reconstituted with bacteriorhodopsin to from transhydrogenase-bacteriorhodopsin vesicles that catalyze a 20-fold light-dependent and uncoupler-sensitive stimulation of the reduction of NADP+ and NADP+ analogs by NADH and a 50-fold shift of the nicotinamide nucleotide ratio. In the presence of light, the transhydrogenase-bacteriorhodopsin vesicles catalyzed a pronounced light intensity-dependent inward proton pumping as indicated by a pH shift of the medium. As indicated by pH shifts, proton pumping by the bacteriorhodopsin essentially paralleled the light-driven transhydrogenase. Addition of valinomycin increased the pH shift twice with a concomitant 50% inhibition of the light-driven transhydrogenase, whereas nigericin inhibited the pH shift completely and the light-driven transhydrogenase partially. Taken together, these results suggest that transhydrogenase and bacteriorhodopsin interact through a delocalized proton-motive force. Possible partial reactions of transhydrogenase were investigated with transhydrogenase-bacteriorhodopsin vesicles energized by light. Reduction of oxidized 3-acetylpyridine adenine dinucleotide by NADH, previously claimed to represent partial reactions, was found to require NADPH. Similarly, reduction of thio-NADP+ by NADPH required NADH. It is concluded that these reactions do not represent partial reactions.  相似文献   

4.
A model for the mechanism of action of bacterial hydrogenase is presented which assumes a single binding site. A series of conformation dependent alterations of the enzyme-substrate interaction are used to describe the unidirectional behavior of the reaction and eliminate the requirement of a modulation binding site to account for allosteric enzyme kinetics.  相似文献   

5.
6.
7.
The interaction between pure transhydrogenase and ATPase (Complex V) from beef heart mitochondria was investigated with transhydrogenase-ATPase vesicles in which the two proteins were co-reconstituted by dialysis or dilution procedures. In addition to phosphatidylcholine and phosphatidylethanolamine, reconstitution required phosphatidylserine and lysophosphatidylcholine. Transhydrogenase-ATPase vesicles catalyzed a 20-30-fold stimulation of the reduction of NADP+ or thio-NADP+ by NADH and a 70-fold shift of the apparent equilibrium expressed as the nicotinamide nucleotide ratio [NADPH][NAD+]/[NADP+][NADH]. In both of these respects, the transhydrogenase-ATPase vesicles were severalfold more efficient than beef heart submitochondrial particles. By measuring the ATP-driven transhydrogenase and the oligomycin-sensitive ATPase activities simultaneously and under the same conditions at low ATP concentrations, i.e. below 15 microM, the ATP-driven transhydrogenase/oligomycin-sensitive ATPase activity ratio was found to be about 3. This value is consistent with the stoichiometries of three protons translocated per ATP hydrolyzed and one proton translocated per NADPH formed and with a mechanism where the two enzymes interact through a delocalized proton-motive force.  相似文献   

8.
9.
10.
11.
12.
The biosynthesis of pyridine dinucleotide transhydrogenase has been studied in isolated rat hepatocytes and in a rabbit reticulocyte-lysate translation system supplemented with either intact isolated rat liver mitochondria or the soluble matrix fraction from isolated mitochondria. In intact hepatocytes, the transhydrogenase precursor was short-lived in the cytosol and was efficiently imported into the membranous fraction. When the cell-free translation mixture was incubated with intact mitochondria, the transhydrogenase precursor was processed to the mature form, to an extent that depended on the amount of added mitochondria. Incubation of the translation mixture with the soluble mitochondria matrix fraction converted the precursor to a mature-sized protein with 75% efficiency, this being blocked by various proteinase inhibitors such as EDTA, 1,10-phenanthroline and leupeptin.  相似文献   

13.
Physiological roles of nicotinamide nucleotide transhydrogenase.   总被引:9,自引:0,他引:9       下载免费PDF全文
From the foregoing considerations, the energy-linked transhydrogenase reaction emerges as a powerful and flexible element in the network of redox and energy interrelationships that integrate mitochondrial and cytosolic metabolism. Its thermodynamic features make it possible for the reaction to respond readily to challenges, either on the side of NADPH utilization or on the side of energy depletion. Yet, the kinetic features are designed to prevent a wasteful input of energy when other sources of reducing equivalents to NADP are available, or to deplete the redox potential of NADPH in other than emergency conditions. By virtue of these characteristics, the energy-linked transhydrogenase can act as an effective buffer system, guarding against an excessive depletion of NADPH, preventing uncontrolled changes in key metabolites associated with NADP-dependent enzymes and calling on the supply of reducing equivalents from NAD-linked substrates only under conditions of high demand for NADPH. At the same time, it can provide an emergency protection against a depletion of energy, especially in situations of anoxia where a supply of reducing equivalents through NADP-linked substrates can be maintained. The flexibility of this design makes it possible that the functions of the energy-linked transhydrogenase vary from one tissue to another and are readily adjustable to different metabolic conditions.  相似文献   

14.
15.
Complex I (NADH-ubiquinone reductase) catalyzes pyridine nucleotide transhydrogenase at rates several fold higher than those found in submitochondrial particles from bovine heart. An ATP-dependent reduction of NADP+ by NADH was demonstrated after combination of Complex I with phospholipids, hydrophobic proteins derived from bovine heart mitochondria, and mitochondrial ATPase (F1)1. The reaction was inhibited by oligomycin, uncoupling agents and low concentrations of Triton X-100.  相似文献   

16.
17.
Reconstituted transhydrogenase-ATPase vesicles obtained with purified beef heart transhydrogenase and oligomycin-sensitive ATPase were investigated with respect to the mode of interaction between the two proton pumps, with special reference to the relative contributions of the membrane potential and proton gradient using valinomycin and nigericin in the presence of potassium. In the absence of ionophores and at low ATP concentrations, below 20 microM, the ATPase generated a proton motive force which was predominantly due to a membrane potential, whereas at saturating concentrations of ATP the proton gradient was the predominant component. The ATP-dependence of the rate of the ATP-driven transhydrogenase reaction showed apparent Km values in the low and high ATP concentration range of about 3 and 56 microM, respectively, with a corresponding difference in Vmax of about 3-fold. It is concluded that the reconstituted transhydrogenase can utilize both a membrane potential and a proton gradient, separately or combined, where the relative contributions of these components depend on the activity of the ATPase. In the reconstituted vesicles, the maximally active transhydrogenase is apparently driven by an electrochemical proton gradient where the membrane potential and the proton gradient contribute one-third and two-thirds, respectively. The rate-dependent relative generation of a membrane potential and pH gradient presumably reflects the proton pump characteristics of the ATPase and/or buffering/permeability characteristics of the vesicles rather than the properties of the transhydrogenase per se. These results are discussed in relation to current models for transhydrogenase-linked proton translocation.  相似文献   

18.
1. Pyridine nucleotide transhydrogenase of Azotobacter vinelandii purified by affinity chromatography consists of a mixture of polydisperse rods at neutral pH. No other structures are seen by electron microscopy. 2. At high pH (8.5--9.0) the rods depolymerize. Complete depolymerization can be achieved in 0.1 M Tris-Cl pH 9.0. The depolymerized enzyme has a molecular weight of 421000 (sedimentation equilibrium), its sedimentation coefficient s20, w = 15 S and its Stokes' radius Rs = 7 nm. Since gel electrophoresis in the presence of sodium dodecyl sulphate shows that transhydrogenase consists of a single polypeptide chain of molecular weight (54 +/- 2) X 10(3) it follows that the depolymerized enzyme has an octameric quaternary structure. We propose that this octamer serves as the functional monomeric unit ('unimer') from which the polymeric form of transhydrogenase is constructed. 3. Gel filtration and sucrose gradient centrifugation studies of cell-free extracts from A. vinelandii show the unimer to be the predominant active species.  相似文献   

19.
Nicotinamide nucleotide transhydrogenase from bovine heart mitochondria was solubilized with cholate and partially purified by ammoniumsulphate fractionation and density gradient centrifugation. Compared to submitochondrial particles this preparation contained less than 10% of oligomycin-sensitive ATPase and cytochromes. When reconstituted with purified mitochondrial phosphatidylcholine, the enzyme catalyzed a reduction of NAD+ by NADPH that was stimulated by uncouplers and which showed a concomitent uncoupler-sensitive uptake of the lipophilic anion tetraphenylboron, indicating the generation of a membrane potential. It is concluded that transhydrogenase can energize the vesicles directly without the intervention of ATPase or cytochromes.  相似文献   

20.
Jackson JB 《FEBS letters》2003,545(1):18-24
Transhydrogenase, in animal mitochondria and bacteria, couples hydride transfer between NADH and NADP(+) to proton translocation across a membrane. Within the protein, the redox reaction occurs at some distance from the proton translocation pathway and coupling is achieved through conformational changes. In an 'open' conformation of transhydrogenase, in which substrate nucleotides bind and product nucleotides dissociate, the dihydronicotinamide and nicotinamide rings are held apart to block hydride transfer; in an 'occluded' conformation, they are moved into apposition to permit the redox chemistry. In the two monomers of transhydrogenase, there is a reciprocating, out-of-phase alternation of these conformations during turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号