首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary glioblastomas (GBMs) commonly overexpress the oncogene epidermal growth factor receptor (EGFR), which leads to increased Ras activity. FTA, a novel Ras inhibitor, produced both time- and dose-dependent caspase-mediated apoptosis in GBM cell lines. EGFR-mediated increase in 3H-thymidine uptake was inhibited by FTA. FACS analysis was performed to determine the percent of apoptotic cells. The sub-Go population of GBM cells was increased from 4.5 to 13.8% (control) to over 45-53.6% in FTA-treated cells within 24 h. Furthermore, FTA also increased the activities of both caspase-3 and -9, and PARP cleavage. Treatment of GBMs with FTA before or after EGF addition to the cultures blocked phosphorylation of Akt and mitogen-activated protein kinases (MAPK). FTA also significantly reduced the amount of EGF-induced Ras-GTP as reflected by a decrease in the level of Ras bound to Raf-RBD-GST. This study demonstrates that inhibition of Ras methylation may provide a therapeutic target for the treatment of GBMs overexpressing EGFR.  相似文献   

2.
3.
4.
Self-renewal, differentiation, and tumorigenicity characterize cancer stem cells (CSCs), which are rare and maintained by specific cell fate regulators. CSCs are isolated from glioblastoma multiforme (GBM) and may be responsible for the lethality of incurable brain tumors. Brain CSCs may arise from the transformation of undifferentiated, nestin-positive neural stem or progenitor cells and GFAP-expressing astrocytes. Here, we report a role of Nanog in the genesis of cancer stem-like cells. Using primary murine p53-knockout astrocytes (p53−/− astrocytes), we provide evidence that enforced Nanog expression can increase the cellular growth rate and transform phenotypes in vitro and in vivo. In addition, Nanog drives p53−/− astrocytes toward a dedifferentiated, CSC-like phenotype with characteristic neural stem cell/progenitor marker expression, neurosphere formation, self-renewal activity, and tumor development. These findings suggest that Nanog promotes dedifferentiation of p53-deficient mouse astrocytes into cancer stem-like cells by changing the cell fate and transforming cell properties.  相似文献   

5.
6.
7.
8.
The aberrant activation of oncogenic pathways promotes tumor progression, but concomitantly elicits compensatory tumor-suppressive responses, such as apoptosis or senescence. For example, Ras induces senescence, while Myc generally triggers apoptosis. Myc is in fact viewed as an anti-senescence oncogene, as it is a potent inducer of cell proliferation and immortalization, bypasses growth-inhibitory signals, and cooperates with Ras in cellular transformation. Recent reports prompt re-evaluation of Myc-induced senescence, and of its role in tumor progression and therapy. We have shown that the cyclin-dependent kinase Cdk2, although redundant for cell cycle progression, has a unique role in suppressing a Myc-induced senescence program: Myc activation elicited expression of p16INK4a and p21Cip1, and caused senescence in cell lacking Cdk2, but not in Cdk2-proficient cells. Additional cellular activities have been identified that suppress Myc-induced senescence, including the Wrn helicase, Telomerase and Miz1. These senescence-suppressing activities were critical for tumor progression, as deficiency in Cdk2, telomerase or Miz1 reduced the onset of Myc-induced lymphoma in transgenic mice. Other gene products like p53, SUV39H1 or TGFß promoted senescence, which together with apoptosis contributed to tumor suppression. Paradoxically, Myc directly counteracted the very same senescence program that it potentially elicits, since it positively regulated Wrn, Telomerase and Cdk2 activity, and Cdk2 inhibition re-activated the latent senescence program in Myc expressing cells. Hence, while these molecules are instrumental to the oncogenic action of Myc, they may simultaneously constitute its Achille's heel for therapeutic development.  相似文献   

9.
10.
11.
12.
13.
K-ras is one of the most frequently mutated genes in virtually all types of human cancers. Using mouse fetal liver erythroid progenitors as a model system, we studied the role of endogenous K-ras signaling in erythroid differentiation. When oncogenic K-ras is expressed from its endogenous promoter, it hyperactivates cytokine-dependent signaling pathways and results in a partial block in erythroid differentiation. In erythroid progenitors deficient in K-ras, cytokine-dependent Akt activation is greatly reduced, leading to delays in erythroid differentiation. Thus, both loss- and gain-of-Kras functions affect erythroid differentiation through modulation of cytokine signaling. These results support the notion that in human cancer patients oncogenic Ras signaling might be controlled by antagonizing essential cytokines.  相似文献   

14.
15.
The p73 gene is capable of inducing cell cycle arrest, apoptosis, senescence, differentiation and to cooperate with oncogenic Ras in cellular transformation. Ras can be considered as a branch point in signal transduction, where diverse extracellular stimuli converge. The intensity of the mitogen-activated protein kinase (MAPK) cascade activation influences the cellular response to Ras. Despite the fundamental role of p53 in Ras-induced growth arrest and senescence, it remains unclear how the Ras/MEK/ERK pathway induces growth arrest in the absence of p53. We report here that oncogenic Ras stabilizes p73 resulting in p73 accumulation and enhancement of its activity. p73, in turn, induces a sustained activation of the MAP kinase cascade synergizing with oncogenic Ras. We also found that inhibition of p73 function modifies the cellular outcome to Ras activation inhibiting Ras-dependent differentiation. Here, we show for the first time that there is a signaling loop between Ras-dependent MAPK cascade activation and p73 function.  相似文献   

16.
In some v-Ha-ras-transfected cell lines, serum deprivation results in apoptosis. Clarification of the molecular mechanisms by which oncogenic Ras controls susceptibility to apoptosis may assist in the development of effective therapies against human cancer with oncogenic ras gene. In this report, we established a v-Ha-ras-transfected human fibroblast clone, R1. In R1 cells, induction of v-Ha-Ras enhanced susceptibility to cell death under serum-deprived conditions. Ladders of cellular DNA were identified only when oncogenic ras was induced under serum-deprived conditions. Platelet-derived growth factor (PDGF) precluded DNA fragmentation of serum-deprived v-Ha-ras-transformed cells. Under serum-depleted conditions, the amounts of activated ERK and Akt decreased as compared with those under serum-containing conditions. The decreased levels of activated ERK and Akt were restored by the addition of PDGF. Inhibition of phosphorylated-ERK and Akt resulted in renewed susceptibility to cell death. These results indicate that failure of signal transduction of oncogenic Ras by the deficiency of growth factors such as PDGF causes v-Ha-Ras-dependent apoptosis.  相似文献   

17.
Previous studies suggested that curcumin is a potential agent against glioblastomas (GBMs). However, the in vivo efficacy of curcumin in gliomas remains not established. In this work, we examined the mechanisms underlying apoptosis, selectivity, efficacy and safety of curcumin from in vitro (U138MG, U87, U373 and C6 cell lines) and in vivo (C6 implants) models of GBM. In vitro, curcumin markedly inhibited proliferation and migration and induced cell death in liquid and soft agar models of GBM growth. Curcumin effects occurred irrespective of the p53 and PTEN mutational status of the cells. Interestingly, curcumin did not affect viability of primary astrocytes, suggesting that curcumin selectivity targeted transformed cells. In U138MG and C6 cells, curcumin decreased the constitutive activation of PI3K/Akt and NFkappaB survival pathways, down-regulated the antiapoptotic NFkappaB-regulated protein bcl-xl and induced mitochondrial dysfunction as a prelude to apoptosis. Cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation. Caspase-3 activation occurred in the p53-normal cell type C6, but not in the p53-mutant U138MG. Besides its apoptotic effect, curcumin also synergized with the chemotherapeutics cisplatin and doxorubicin to enhance GBM cells death. In C6-implanted rats, intraperitoneal curcumin (50 mg kg(-1) d(-1)) decreased brain tumors in 9/11 (81.8%) animals against 0/11 (0%) in the vehicle-treated group. Importantly, no evidence of tissue (transaminases, creatinine and alkaline phosphatase), metabolic (cholesterol and glucose), oxidative or hematological toxicity was observed. In summary, data presented here suggest curcumin as a potential agent for therapy of GBMs.  相似文献   

18.
To determine cancer pathway activities in nine types of primary tumors and NCI60 cell lines, we applied an in silico approach by examining gene signatures reflective of consequent pathway activation using gene expression data. Supervised learning approaches predicted that the Ras pathway is active in ~70% of lung adenocarcinomas but inactive in most squamous cell carcinomas, pulmonary carcinoids, and small cell lung carcinomas. In contrast, the TGF-β, TNF-α, Src, Myc, E2F3, and β-catenin pathways are inactive in lung adenocarcinomas. We predicted an active Ras, Myc, Src, and/or E2F3 pathway in significant percentages of breast cancer, colorectal carcinoma, and gliomas. Our results also suggest that Ras may be the most prevailing oncogenic pathway. Additionally, many NCI60 cell lines exhibited a gene signature indicative of an active Ras, Myc, and/or Src, but not E2F3, β-catenin, TNF-α, or TGF-β pathway. To our knowledge, this is the first comprehensive survey of cancer pathway activities in nine major tumor types and the most widely used NCI60 cell lines. The "gene expression pathway signatures" we have defined could facilitate the understanding of molecular mechanisms in cancer development and provide guidance to the selection of appropriate cell lines for cancer research and pharmaceutical compound screening.  相似文献   

19.
Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (DeltaKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or DeltaKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing DeltaKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or DeltaKI receptors. However, only in DeltaKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号