首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new HPLC technique for the analysis of picomolar amounts of serotonin (5HT) in plasma and cerebrospinal fluid (CSF) is described. Bufotenin is used as internal standard. Detection is achieved electrochemically or fluorimetrically. The detection limit can be estimated as 50 pg 5HT/mL of either fluid (0.3 picomolar). The method is used to characterize a non-particulate pool of 5HT which is clearly distinct of the platelet pool. Administration of parachlorophenylalanine (PCPA) 300 mg/kg to rats leads to a 90% reduction in the plasmatic pool whereas platelet 5HT is only slightly decreased (3rd day after PCPA) or even increased (7th day after PCPA). Human concentration (n=15) of 5HT in plasma is 2.6 ± 0.9 ng/mL (x ± S.D.). The application of the method to CSF of neurological patients reveals 5HT concentrations ranging from 93 to 962 pg/mL.  相似文献   

2.
Clinical pharmacokinetic studies of ciprofloxacin require accurate and precise measurement of plasma drug concentrations. We describe a rapid, selective and sensitive HPLC method coupled with fluorescence detection for determination of ciprofloxacin in human plasma. Internal standard (IS; sarafloxacin) was added to plasma aliquots (200 μL) prior to protein precipitation with acetonitrile. Ciprofloxacin and IS were eluted on a Synergi Max-RP analytical column (150 mm×4.6 mm i.d., 5 μm particle size) maintained at 40°C. The mobile phase comprised a mixture of aqueous orthophosphoric acid (0.025 M)/methanol/acetonitrile (75/13/12%, v/v/v); the pH was adjusted to 3.0 with triethylamine. A fluorescence detector (excitation/emission wavelength of 278/450 nm) was used. Retention times for ciprofloxacin and IS were approximately 3.6 and 7.0 min, respectively. Calibration curves of ciprofloxacin were linear over the concentration range of 0.02-4 μg/mL, with correlation coefficients (r(2))≥0.998. Intra- and inter-assay relative standard deviations (SD) were <8.0% and accuracy values ranged from 93% to 105% for quality control samples (0.2, 1.8 and 3.6 μg/mL). The mean (SD) extraction recoveries for ciprofloxacin from spiked plasma at 0.08, 1.8 and 3.6 μg/mL were 72.8±12.5% (n=5), 83.5±5.2% and 77.7±2.0%, respectively (n=8 in both cases). The recovery for IS was 94.5±7.9% (n=15). The limits of detection and quantification were 10 ng/mL and 20 ng/mL, respectively. Ciprofloxacin was stable in plasma for at least one month when stored at -15°C to -25°C and -70°C to -90°C. This method was successfully applied to measure plasma ciprofloxacin concentrations in a population pharmacokinetics study of ciprofloxacin in malnourished children.  相似文献   

3.
A rapid and simple method for quantitation of metformin (MET) in human plasma by HPLC-MS/MS was developed and validated. The sample preparation consists of plasma deproteinization using acetonitrile. The mobile phase consisted of water-acetonitrile and formic acid (55/45/0.048, v/v/%) and the run time was 3 min. A pursuit C(18) (100 mm x 2.0 mm i.d., 3 microm) column connected to a guard column MS-pursuit (0.20 mm x 0.20 mm i.d., 5 microm) was used. The range of the calibration curve was from 20 to 5000 ng/mL, the limit of quantitation being 20 ng/mL. The detection was performed on a mass spectrometer (ESI+), using metoprolol as internal standard. The calibration curves have r(2) values of 0.995 (CV=0.24%, n=10). The accuracy and precision were between 90.74 and 106.7% and coefficients of variations (CV) of 1.10 and 4.35%, respectively. The method was applied to determine the pharmacokinetic parameters: C(max) (1667.25 ng/mL) and T(max) (3.89 h).  相似文献   

4.
A method for determination of a gamma-secretase inhibitor, cis-3-[4-[(4-chlorophenyl)sulfonyl]-4-(2,5-difluorophenyl)cyclohexyl]propanoic acid (A), in human plasma and cerebrospinal fluid (CSF) has been developed to support the clinical investigation of compound A for its potential treatment of Alzheimer's disease. The method is based on HPLC with atmospheric pressure chemical ionization tandem mass spectrometric detection (APCI-MS/MS) in the negative ionization mode using a heated nebulizer interface. The addition of phosphoric acid at the ratio of 10-30microL per milliliter of human plasma or CSF was required during clinical sample collection to stabilize an acylglucuronide metabolite (C), which was potentially present in human plasma and CSF. Tween 20 (10% solution) was added at the ratio of 20microL per milliliter of CSF during CSF sample collection to prevent the loss of compound A during the storage of clinical samples. The compound A and its analog internal standard (B) in treated plasma or CSF were isolated from human plasma or CSF using solid phase extraction (SPE) in the 96 well format. The isolated analyte and internal standard were chromatographed on a Phenomenex Synergi Polar RP analytical column (50mmx3.0mm, 4microm), using a mobile phase consisting of 60/40 (v/v, %) acetonitrile/water at a flow-rate of 0.5mL/min. Tandem mass spectrometric detection was performed using a Sciex API 3000 tandem mass spectrometer operated in the multiple reaction monitoring (MRM) mode using precursor to product ion transitions of 441-->175 for A and 469-->175 for B, respectively. The assays were validated over the concentration range of 0.5-200ng/mL for human plasma and CSF. Replicate analyses (n=5) of spiked standards for both assays yielded a linear response with coefficients of variation less than 7% and accuracy within 5% of the nominal concentrations. In addition, the assays were automated to improve sample throughput by utilizing a Packard Multi PROBEII automated liquid handling system and a Tom-Tec Quadra 96 system. Numerous clinical studies have been supported using these assays.  相似文献   

5.
A sensitive and reliable method for the determination of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in human plasma and cerebrospinal fluid (CSF) has been developed. The method is based on capillary liquid chromatography (LC)/tandem mass spectrometry (MS/MS) using deuterium-labeled GABA (gamma-aminobutyric acid-2,2-D(2), GABA-d(2)) as internal standard. Pre-column derivatization with 7-fluoro-4-nitrobenzoxadiazole (NBD-F) was deployed, allowing both effective in-line pre-concentration and sensitive tandem MS detection of the analyte. An extraction column (10 mm x 0.25 mm, 7 microm, C(18)) was used for preconcentrating and stacking the sample. Separation was carried out on an analytical column (50 mm x 0.25 mm, 5 microm, C(18)). Characteristic precursor-to-product ion transitions, m/z 267--> 249 (for NBD-GABA) and m/z 269--> 251 (for NBD-GABA-d(2)) were monitored for the quantification. A linear calibration curve from 10 to 250 ng/mL GABA with an r(2) value of 0.9994 was obtained. Detection limit was estimated to be 5.00 ng/mL GABA (S/N = 3). Human plasma and CSF samples were analyzed. The concentrations of GABA were found to be 98.6 +/- 33.9 ng/mL (mean +/- S.D., n = 12), and 44.3 +/- 10.0 ng/mL (n = 6) in plasma and CSF, respectively.  相似文献   

6.
A simple and rapid HPLC method that includes ultrafiltration to remove plasma and peritoneal fluid protein was developed to determine doripenem concentrations in human plasma and peritoneal fluid. Doripenem was stabilized by immediate mixing of the plasma or peritoneal fluid with 1M 3-morpholinopropanesulfonic acid buffer (pH 7.0) (1:1). Doripenem and an internal standard were detected by measuring their ultraviolet absorbance at 300 nm. The calibration curves for doripenem in human plasma and peritoneal fluid were linear from 0.05 to 100 microg/mL. For plasma, both the intra- and the interday precision were less than 3.41% (CV), and the accuracy was between 97.4 and 101.7% above 0.05 microg/mL. For peritoneal fluid, the intra- and the interday precision were less than 2.98% (CV), and the accuracy was between 94.4 and 103.9% above 0.05 microg/mL. The limit of detection was 0.02 microg/mL in both plasma and peritoneal fluid. The assay has been applied to the therapeutic drug monitoring of doripenem in both plasma and peritoneal fluid.  相似文献   

7.
Mass fragmentographic methods for determination of 4-hydroxy-3-methoxyphenyl acetic acid (HVA) in human cerebrospinal fluid (CSF), urine, blood plasma and mouse brain were developed. After isolation by extraction or by Amberlite XAD-2 chromatography the HVA was converted to the heptafluorobutyryl methyl ester derivative and analyzed using the 2, 2 dideutero-2 (4-hydroxy-3-methoxy-2, 5, 6-trideuterophenyl) acetic acid (HVA-d5) as an internal standard. The values (mean ± coefficient of variation) obtained on repetitive analyses of the same sample were for human CSF 0.42 nmole/ml ± 1.5% (n = 10), human plasma 48 pmole/ml ± 4.5% (n = 15), human urine 20 nmole/ml ± 5.4% (n = 10) and mouse brain 1.2 nmole/g ± 0.6% (n = 12). The results demonstrate that the use of HVA-d5 as an internal standard provides high precision and the necessary sensitivity for the mass fragmentographic determination of HVA in small amount of tissue and body fluids.  相似文献   

8.
A method for the determination of tranexamic acid (TXA) in human plasma and cerebral spinal fluid (CSF) was developed. Analyses were performed by ultra performance liquid chromatography with tandem mass spectrometry detection (UPLC–MS/MS) using ?-aminocaproic acid (ACA) as an internal standard. TXA and ACA were extracted from a 50 μL sample of plasma or CSF using a methanol protein crash protocol, and chromatographic separation was performed on an ACQUITY? TQD mass spectrometer using a UPLC C18 BEH 1.7 μm column with a water and methanol gradient containing 0.1% formic acid. The detection and quantitation was performed by positive ion electrospray ionization using the multiple reaction monitoring (MRM) mode. The method was linear over the concentration range of 0.1–10.0 μg/mL, with lower limit of quantitation of 0.1 μg/mL for TXA. The intra- and inter-assay precision was less than 12% and 13% respectively at the plasma and CSF TXA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around-time. The method has been successfully applied to assess the plasma and CSF concentrations of tranexamic acid achieved with only one dosing regimen of tranexamic acid in patients undergoing cardiopulmonary bypass surgery (CPB).  相似文献   

9.
A sensitive and precise LC-ESI-MS/MS method for the determination of vandetanib (ZD6474) in human plasma and cerebrospinal fluid (CSF) using [(13)C,d(3)]-ZD6474 as an internal standard (ISTD) was developed and validated. Sample preparation consisted of a simple liquid-liquid extraction with tert-butyl methyl ether containing 0.1% or 0.5% ammonium hydroxide. ZD6474 and ISTD were separated on a Kinetex C18 column (2.6 μm, 50 mm × 2.1 mm) at ambient temperature with an isocratic mobile phase (acetonitrile/10mM ammonium formate=50/50, v/v, at pH 5.0) delivered at 0.11 mL/min. The retention time of both compounds was at 1.60 min in a runtime of three min. Detection was achieved by an API-3200 LC-MS/MS system, monitoring m/z 475.1/112.1 and m/z 479.1/116.2 for vandetanib and ISTD, respectively. The method was linear in the range of 0.25-50 ng/mL (R(2) ≥ 0.990) for the CSF curve and from 1.0 to 3000 ng/mL (R(2) ≥ 0.992) for the plasma curve. The mean recovery for vandetanib was 80%. Within-day and between-day precisions were ≤ 8.8% and ≤ 5.9% for CSF and plasma, respectively. Within-day and between-day accuracies ranged from 95.0 to 98.5% for CSF, and from 104.0 to 108.5% for plasma. Analysis of plasma from six different sources showed no matrix effect for vandetanib (MF=0.98, %CV ≤ 4.97, n=6). This method was successfully applied to the analysis of pharmacokinetic samples from children with brain tumors treated with oral vandetanib.  相似文献   

10.
The work presented here deals with the development of a quantitative tool for the determination of the quaternary ammonium anticholinergic glycopyrrolate in human plasma samples. Mepenzolate was used as an internal standard. The plasma samples were subjected to a suitable sample clean-up consisting of a simple and relatively fast, two step liquid-liquid ion-pair extraction procedure. The chromatography, using the same volatile ion-pair reagent heptafluorobutyric acid (HFBA), takes only 10 min. Relative standard deviation of retention times was never above 2.26% (n=36). The method was fully validated based on the US FDA Bioanalytical Method Validation Guidance for Industry. As such, a quantitative ESI-LC-MS(/MS) (TOF mass spectrometry) method was optimized for the absolute quantification of glycopyrrolate in human plasma in a concentration range from 0.101 to 101 ng/mL using a quadratic calibration function (R(2)=0.9995), y=-2.21 x 10(-4) (+/-3.93 x 10(-5))xx(2)+5.85 x 10(-2) (+/-5.27 x 10(-3))xx+4.08 x 10(-3) (+/-4.82 x 10(-4)). For the three QC concentrations (QC(1) 0.252, QC(2) 2.52, and QC(3) 25.2ng/mL) and the LLOQ (0.101 ng/mL), total precision was under 20% (18.0% (n=6) at the LLOQ) and maximum accuracy was 112% (88.9% for the LLOQ, n=6). Absolute matrix effect (maximum 133%+/-9.59, n=3), absolute recovery (better than 41.8%+/-2.22, n=3), relative (inter-subject) matrix effect (maximum 10.9%+/-1.45, n=4) and process efficiency (better than 45.2%+/-5.74, n=3) too were assessed at the 3 QC concentrations.  相似文献   

11.
A selective and sensitive method for the determination of the HIV protease inhibitor saquinavir in human plasma, saliva, and urine using liquid-liquid extraction and LC-MS-MS has been developed, validated, and applied to samples of a healthy individual. After extraction with ethyl acetate, sample extracts were chromatographed isocratically within 5 min on Kromasil RP-18. The drug was detected with tandem mass spectrometry in the selected reaction monitoring mode using an electrospray ion source and 2H(5)-saquinavir as internal standard. The limit of quantification was 0.05 ng/mL. The accuracy of the method varied between -1 and +10% (SD within-batch) and the precision ranged from +4 to +10% (SD batch-to-batch). The method is linear at least within 0.05 and 87.6 ng/mL. After a regular oral dose (600 mg) saquinavir concentrations were detectable for 48 h in plasma and were well correlated with saliva concentrations (r(2)=0.9348, mean saliva/plasma ratio 1:15.1). The method is well suited for low saquinavir concentrations in different matrices.  相似文献   

12.
A sensitive, precise and accurate method for the quantification of the alimentary opioid peptide Gluten Exorphin B5 (GE-B5, Tyr-Gly-Gly-Trp-Leu) in cerebrospinal fluid (CSF) was developed using liquid chromatography-mass spectrometry (LC-MS). Aliquots (10 microL) of sheep CSF were injected into a LC-MS instrument equipped with a reversed-phase C12 column at a flow rate of 250 microL/min. The mobile phase consisted of Eluent A water with 0.01% acetic acid as an ion-pairing reagent, and Eluent B acetonitrile. The LC-MS system was programmed to divert column flow to waste for 3.5 min after injection, after which time flow was directed into the mass spectrometer that operated in positive ion mode. DADLE (Tyr-D-Ala-Gly-Phe-D-Leu) was used as Internal Standard. No significant interfering peaks were detected at the retention times of GE-B5 in CSF blanks. The calibration curves were linear in the range of 0.39-78.00 ng/mL. The lower limit of detection and the lower limit of quantitation values for GE-B5 in CSF were established at 0.30 and 0.78 ng/mL, respectively. The intra-day and inter-day precision values were <12% relative standard deviation. The intra-day and inter-day accuracy were 99.46-100.86% and 98.95-100.02%, respectively. Recovery of GE-B5 in CSF samples was greater than 80%. Stability studies indicate that GE-B5 in CSF undergoes significant degradation (>55% after 600 min), which is reduced by the addition of protease inhibitors. This is the first reported method for the quantification of GE-B5 in CSF.  相似文献   

13.
7-Ethyl-10-hydroxycamptothecine (SN-38) is the active metabolite of the topoisomerase I inhibitor and antineoplastic agent, irinotecan (CPT-11). Here, we present a new and sensitive reversed-phase high-performance liquid chromatographic method for the determination of SN-38 in human plasma samples. Sample pretreatment involves a protein precipitation of 1-mL samples with 2 mL of acetonitrile, followed by a one-step solvent extraction with 5 mL of chloroform, with camptothecine used as internal standard. Chromatographic separation was achieved on an analytical column packed with Hypersil ODS material (100 x 4.6 mm i.d., 5 microm P.S.), and isocratic elution with a mixture of acetonitrile:0.1 M ammonium acetate containing 10 mM tetrabutylammonium sulfate (23:77, v/v), pH 5.3 (hydrochloric acid). The column effluent was monitored at excitation and emission wavelengths of 380 and 556 nm, respectively. The limit of quantitation of the method presented was at the low femtomole level ( approximately 8.4 fmol; equivalent to 5 pg/mL), with the standard curves being linear over nearly three orders of magnitude. Intraassay precision was <9%, while interassay variations were between 2 and 5%. The extraction efficiency was concentration independent and averaged 88.0 +/- 14.3% (mean +/- standard deviation; n = 59). The described method will be used in future studies to assess the extent of enterohepatic recirculation of SN-38 in cancer patients following intravenous CPT-11 treatment.  相似文献   

14.
A highly sensitive and specific LC-MS method was developed and validated for the quantification of digoxin in human plasma and urine using d5-dihydrodigoxin as internal standard (IS). The assay procedure involved extraction of digoxin and IS from human plasma with chloroform-isopropanol (95:5, v/v). Chromatogrphic separation was achieved on a Spherisorb ODS2 column using a gradient mobile phase with 5 mmol/L ammonium acetate in water with 1% acetic acid and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective [M+K](+) ions, m/z 819.4 for digoxin and m/z 826.4 for IS. The method was proved to be accurate and precise at linearity range of 0.12-19.60 ng/mL in plasma with a correlation coefficient (r(2)) of >or=0.9968 and 1.2-196.0 ng/mL in urine. The limit of quantification achieved with this method was 0.12 ng/mL in plasma and 1.2 ng/mL in urine. The intra- and inter-assay precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was successfully applied to a pharmacokinetic study in human volunteers following intravenous administration of digoxin.  相似文献   

15.
A rapid, sensitive and specific method was developed and validated using liquid chromatography-tandem mass spectrometry (LC/MS/MS) for determination of gefitinib in human plasma and mouse plasma and tissue. Sample preparation involved a single protein precipitation step by the addition of 0.1 mL of plasma or a 200 mg/mL tissue homogenate diluted 1/10 in human plasma with 0.3 mL acetonitrile. Separation of the compounds of interest, including the internal standard (d8)-gefitinib, was achieved on a Waters X-Terra C18 (50 mm x 2.1 mm i.d., 3.5 microm) analytical column using a mobile phase consisting of acetonitrile-water (70:30, v/v) containing 0.1% formic acid and isocratic flow at 0.15 mL/min for 3 min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the range of 1-1000 ng/mL for the human plasma samples and 5-1000 ng/mL for mouse plasma and tissue samples with values for the coefficient of determination of > 0.99. The values for both within- and between-day precision and accuracy were well within the generally accepted criteria for analytical methods (< 15%). This method was subsequently used to measure concentrations of gefitinib in mice following administration of a single dose of 150 mg/kg intraperitoneally and in cancer patients receiving an oral daily dose of 250 mg.  相似文献   

16.
We have developed and validated a method for the quantification of fentanyl, a synthetic opioid, in dog plasma by on-line SPE with a hydrophilic column coupled to tandem mass spectrometry in positive electrospray mode. A column-switching instrument with 10-port valve and two HPLC pumping systems were employed. Deuterated fentanyl served as the internal standard. A Waters Oasis HLB extraction column and a Waters Atlantis HILIC Silica analytical column in a column-switching set-up with gradient elution were utilized. Both fentanyl (analyte) and the internal standard (fentanyl-d5) were determined via multiple reaction monitoring (MRM) and the MS/MS ion transitions monitored were m/z 337.0/188.0 and 342.0/188.0, respectively. Each plasma sample was chromatographed within 5 min. The calibration curves were linear over a widely range of 0.01-50 ng/mL using weighted linear regression analysis (1/x). The low limit of quantitation was 0.01 ng/mL. The intra- and inter-day accuracy ranged from 102 to 112% and the overall precision was less than 3%. The recoveries ranged from 90 to 105% in plasma at the concentrations of 0.04, 0.4, 4 and 40 ng/mL. No influence of freeze/thaw and long-term stability were observed. This validated method has been successfully applied to analyze the dog plasma samples of a pharmacokinetics study.  相似文献   

17.
A sensitive rapid method for the simultaneous determination of four major active alkaloids (dehydrocavidine, coptisine, dehydroapocavidine, and tetradehydroscoulerine, in abbreviation thereafter called YHL-I, YHL-II, YHL-III, and YHL-IV, respectively) from a Chinese traditional medicine Corydalis saxicola Bunting. (Yanhuanglian) in rat plasma and urine was established and validated. The assay for these substances in plasma and urine was based on HPLC coupled with tandem mass spectrometry (MS/MS) detection using multiple reaction monitoring mode (MRM) with berberine and clenbuterol as internal standards. The plasma and urine sample were deproteinated by adding methanol prior to liquid chromatography where separation was performed on a Luna column (5 microm, 100 x 2.00 mm) and an Agilent Zorbax SB-C18 guard column (5 microm, 20 x 4 mm). The method was validated with the concentration range 1-1000 ng/mL in plasma and 10-1000 ng/mL in urine for the four test compounds, and the calibration curves were linear with correlation coefficients >0.999. The lowest limits of quantitation for all four substances were 1 ng/mL in 0.1 mL rat plasma and 10 ng/mL in 0.1 mL urine. The intra-assay accuracy and precision in plasma ranged from 88.1 to 115.7% and 1.4 to 10.8%, respectively, while inter-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV ranged from 96.2 to 113.2% and 0.4 to 16.9%, respectively. The intra-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV in rat urine ranged from 96.1 to 112.9% and 1.2 to 8.3%, respectively, while inter-assay accuracy and precision ranged from 95.0 to 106.8% and 2.2 to 10.3%, respectively. The method was further applied to assess pharmacokinetics and urine excretion of the four alkaloids after oral and intravenous administration to rats. Practical utility of this new LC-MS-MS method was confirmed in pilot pharmacokinetic studies in rats following both intravenous and oral administration.  相似文献   

18.
A rapid, sensitive, and specific LC/MS/MS-based method was developed for determining the concentration of DMXAA in human and mouse plasma. Sample preparation involved a single protein precipitation step using acetonitrile. Separation of DMXAA and 6-isopropoxy-9-oxoxanthene-2-carboxylic acid, the internal standard, was achieved on a Waters X-Terra C(18) (50 mm x 2.1mm i.d., 3.5 microm) analytical column using a mobile phase consisting of acetonitrile/10 mM ammonium acetate (55:45, v/v) containing 0.1% formic acid and isocratic flow at 0.2 mL/min for 3 min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the range of 5-3000 ng/mL. The values for precision and accuracy were <9.6%, except at the LLOQ (5 ng/mL) level, which was within 16.8%. Recovery of DMXAA in mouse plasma was >65%. DMXAA was stable through 2 freeze/thaw cycles, to 2h in mouse plasma or 50% acetonitrile, and on the autosampler to 5.1h. This method was subsequently used to measure concentrations of DMXAA in mice following intraperitoneal administration.  相似文献   

19.
A liquid chromatography/tandem mass spectrometric (LC/MS/MS) assay was developed for the quantitative determination of salirasib (S-trans,trans-farnesylthiosalicylic acid, FTS) in human plasma. Sample pretreatment involved liquid-liquid extraction with methyl t-butyl ether of 0.5-mL aliquots of lithium heparin plasma spiked with the internal standard, S-trans,trans-5-fluoro-farnesylthiosalicylic acid (5-F-FTS). Separation was achieved on Waters X-Terra C(18) (50 mm x 2.1 mm i.d., 3.5 microm) at room temperature using isocratic elution with acetonitrile/10 mM ammonium acetate buffer mobile phase (80:20, v/v) containing 0.1% formic acid at a flow rate of 0.20 mL/min. Detection was performed using electrospray MS/MS by monitoring the ion transitions from m/z 357.2-->153.0 (salirasib) and m/z 375.1-->138.8 (5-F-FTS). Calibration curves were linear in the concentration range of 1-1000 ng/mL. A 5000 ng/mL sample that was diluted 1:10 (v/v) with plasma was accurately quantitated. The values for both within day and between day precision and accuracy were well within the generally accepted criteria for analytical method (<8.0%). This assay was subsequently used for the determination of salirasib concentrations in plasma of cancer patients after oral administration of salirasib at a dose of 400 mg.  相似文献   

20.
Data are lacking concerning the longitudinal covariability and cross-sectional balance between central and peripheral 5-HIAA concentrations in humans and on the possible associations between tobacco smoking or post-traumatic stress disorder (PTSD) and CSF and plasma 5-HIAA concentrations. Using serial cerebrospinal fluid (CSF) and blood sampling, we determined the concentrations of 5-HIAA in CSF and plasma over 6 h, and examined their relationships in healthy volunteers and patients with PTSD-both smokers and nonsmokers. Patients with PTSD and healthy volunteers had very similar CSF 5-HIAA concentrations. Significant and positive correlations between CSF and plasma 5-HIAA levels were observed within individuals, but this CNS-peripheral 5-HIAA relationship was significantly reduced in smokers (nonsmokers: mean r = 0.559 +/- 0.072; smokers: mean r = 0.329 +/- 0.064 p < 0.038). No significant cross-sectional, interindividual correlation of mean CSF and mean plasma 5-HIAA was seen (r = 0.094). These data show that changes in CSF 5-HIAA levels within an individual over time are largely reflected in plasma 5-HIAA, albeit significantly less so in smokers. The present results therefore suggest that clinically, longitudinal determination of plasma 5-HIAA concentrations within an individual patient can be used to make inferences about relative changes in integrated CSF 5-HIAA concentrations. However, plasma 5-HIAA concentrations provide no significant information about absolute levels of the serotonin metabolite in the CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号