首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth factors released from activated platelets initiate and modulate wound healing in both soft and hard tissues. A recent strategy to promote the wound-healing cascade is to prepare an autologous platelet concentrate suspended in plasma, also known as platelet-rich plasma, that contains growth factors and administer it to wound sites. The purpose of this study was to quantitate platelet number and growth factors released from a prepared platelet concentrate. Whole blood was drawn from 10 healthy patients undergoing cosmetic surgery and concentrated into platelet-rich plasma. Platelet counts on whole blood and platelet-rich plasma were determined using a Cell-Dyn 3200. Platelet-derived growth factor-BB, transforming growth factor-beta1, vascular endothelial growth factor, endothelial growth factor, and insulin-like growth factor-1 were measured in the platelet-rich plasma using the enzyme-linked immunosorbent assay method. In addition, platelet activation during the concentration procedure was analyzed by measuring P selectin values in blood serum. An 8-fold increase in platelet concentration was found in the platelet-rich plasma compared with that of whole blood (baseline whole blood, 197 +/- 42 x 10 platelets/microl; platelet concentrate, 1600 +/- 330 x 10 platelets/microl). The concentration of growth factors also increased with increasing platelet number. However, growth factor concentration varied from patient to patient. On average for the whole blood as compared with platelet-rich plasma, the platelet-derived growth factor-BB concentration increased from 3.3 +/- 0.9 ng/ml to 17 +/- 8 ng/ml, transforming growth factor-beta1 concentration increased from 35 +/- 8 ng/ml to 120 +/- 42 ng/ml, vascular endothelial growth factor concentration increased from 155 +/- 110 pg/ml to 955 +/- 1030 pg/ml, and endothelial growth factor concentration increased from 129 +/- 61 pg/ml to 470 +/- 320 pg/ml. No increase was found for insulin-like growth factor-1. In addition, no increase in platelet activation occurred during the concentration procedure as determined by the platelet surface receptor P selectin (45 +/- 16 pg/ml to 52 +/- 11 pg/ml, p = 0.65). In conclusion, a variety of potentially therapeutic growth factors were detected and released from the platelets in significant levels in platelet-rich plasma preparations. Sufficient concentrates and release of these growth factors through autologous platelet gels may be capable of expediting wound healing in a variety of as yet undetermined specific wound applications.  相似文献   

2.
Among the great challenges facing clinical research is the development of bioactive surgical additives regulating inflammation and increasing healing. Although the use of fibrin adhesives and platelet-rich plasma (PRP) is well documented, they have their own limitations. Hence, reconstructive dental surgeons are looking for an “edge” that jump starts the healing process to maximize predictability as well as the volume of regenerated bone. Overcoming the restrictions related to the reimplantation of blood-derived products, a new family of platelet concentrate, which is neither a fibrin glue nor a classical platelet concentrate, was developed in France. This second generation platelet concentrate called platelet-rich fibrin (PRF), has been widely used to accelerate soft and hard tissue healing. Its advantages over the better known PRP include ease of preparation/application, minimal expense, and lack of biochemical modification (no bovine thrombin or anticoagulant is required). This article serves as an introduction to the PRF “concept” and its potential clinical applications with emphasis on periodontal regeneration.  相似文献   

3.
Autologous platelet concentrates are successfully adopted in a variety of medical fields to stimulate bone and soft tissue regeneration. The rationale for their use consists in the delivery of a wide range of platelet-derived bioactive molecules that promotes wound healing. In addition, antimicrobial properties of platelet concentrates have been pointed out. In this study, the effect of the platelet concentration, of the activation step and of the presence of plasmatic components on the antimicrobial activity of pure platelet-rich plasma was investigated against gram positive bacteria isolated from oral cavity. The antibacterial activity, evaluated as the minimum inhibitory concentration, was determined through the microdilution two-fold serial method. Results seem to suggest that the antimicrobial activity of platelet-rich plasma against Enterococcus faecalis, Streptococcus agalactiae, Streptococcus oralis and Staphylococcus aureus is sustained by a co-operation between plasma components and platelet-derived factors and that the activation of coagulation is a fundamental step. The findings of this study may have practical implications in the modality of application of platelet concentrates.  相似文献   

4.
New insights into and novel applications for platelet-rich fibrin therapies   总被引:11,自引:0,他引:11  
The therapeutic use of autologous platelet-rich plasma constitutes a relatively new biotechnology that has been a breakthrough in the stimulation and acceleration of soft-tissue and bone healing. The efficiency of this process lies in the local and continuous delivery of a wide range of growth factors and proteins, mimicking the needs of the physiological wound healing and reparative tissue processes. Consequently, the application of platelet-rich plasma has been extended to many different fields, including orthopedics, sports medicine, dentistry, cosmetic and periodontal medicine and cosmetic, plastic and maxillofacial surgery. This article highlights the use of this technology and discusses some of the obstacles and challenges that need to be addressed to maintain progress in this field.  相似文献   

5.
富血小板血浆是近些年来比较热门的一种血液制品,其来源于自体,且制备方法简单,又富含大量血小板及多种生长因子,能够加速骨愈合,增强骨再生,促进软组织及神经损伤恢复,因此得到了广泛的关注。国内外的研究人员根据富血小板血浆所具有的特点,针对各个方面对其进行了大量的研究实验,并且在临床骨科疾病的治疗中也已经开始了实验性应用,如骨缺损、骨再生,肌腱、韧带及软组织损伤,脊柱脊髓损伤等。尤其是在脊柱脊髓损伤的治疗方面,无论是单独应用富血小板血浆治疗,还是联合应用富血小板血浆与脊髓神经前体细胞、骨髓间充质干细胞等有利于脊髓神经损伤恢复的细胞因子复合物共同治疗,均取得了突破性的进展,为研究脊柱脊髓损伤的治疗提供了新的方向。  相似文献   

6.
Peripheral neuropathic pain typically results from trauma-induced nociceptive neuron hyperexcitability and their spontaneous ectopic activity. This pain persists until the trauma-induced cascade of events runs its full course, which results in complete tissue repair, including the nociceptive neurons recovering their normal biophysical properties, ceasing to be hyperexcitable, and stopping having spontaneous electrical activity. However, if a wound undergoes no, insufficient, or too much inflammation, or if a wound becomes stuck in an inflammatory state, chronic neuropathic pain persists. Although various drugs and techniques provide temporary relief from chronic neuropathic pain, many have serious side effects, are not effective, none promotes the completion of the wound healing process, and none provides permanent pain relief. This paper examines the hypothesis that chronic neuropathic pain can be permanently eliminated by applying platelet-rich plasma to the site at which the pain originates, thereby triggering the complete cascade of events involved in normal wound repair. Many published papers claim that the clinical application of platelet-rich plasma to painful sites, such as muscle injuries and joints, or to the ends of nerves evoking chronic neuropathic pain, a process often referred to as prolotherapy, eliminates pain initiated at such sites. However, there is no published explanation of a possible mechanism/s by which platelet-rich plasma may accomplish this effect. This paper discusses the normal physiological cascade of trauma-induced events that lead to chronic neuropathic pain and its eventual elimination, techniques being studied to reduce or eliminate neuropathic pain, and how the application of platelet-rich plasma may lead to the permanent elimination of neuropathic pain. It concludes that platelet-rich plasma eliminates neuropathic pain primarily by platelet- and stem cell-released factors initiating the complex cascade of wound healing events, starting with the induction of enhanced inflammation and its complete resolution, followed by all the subsequent steps of tissue remodeling, wound repair and axon regeneration that result in the elimination of neuropathic pain, and also by some of these same factors acting directly on neurons to promote axon regeneration thereby eliminating neuropathic pain.  相似文献   

7.
Platelets produce platelet growth factors such as PDGF, IGF-1, EGF-, HGF, TGFβ, bFGF, and VEGF, which are crucial in regulating all stages of the wound healing process. The source of these substances is platelet-rich plasma (PRP). Over the past five decades, the interest and use of the regenerative properties of platelets have increased significantly in many different fields of medicine around the world. PRP and PRF plate preparations are used in: 1. Dentistry (they reduce bleeding, facilitate and accelerate soft tissue healing and bone regeneration - FGF 2, IGF-1, IGF-2, TGF-β1, and PDGF); 2. Sports medicine - IGF-1, IGF-2, TGF-β, VEGF, PDGF and bFGF, EGF); 3. dermatology and cosmetology (treatment of alopecia, hair reconstruction - FGF-7, HGF, acne scars, skin rejuvenation and regeneration, treatment of chronic and poorly healing wounds, burns, and acquired vitiligo); 4. Gynecology and reproductive medicine (treatment of infertility, erectile dysfunction - PDGF-β, TGF-β, IGF-1, in sexual dysfunction - PDGF, in vaginal atrophy); 5 Ophthalmology (in the healing of corneal epithelial wounds, in the treatment of dormant corneal ulcers, dry eye syndrome and the reconstruction of the corneal surface; 6. Neurology (regeneration of neurons, pain alleviation, and clinical symptoms - TGF-β 1, IGF-1, PDGF, VEGF) and FGF). Platelet-rich plasma therapy is a very interesting alternative and complement to traditional methods of treatment. However, the potential for using platelets is still not fully understood. The composition of platelet-rich plasma depends on many factors that may affect its use's efficacy and clinical benefits. Further research is necessary to standardize PRP delivery's preparation procedures and methods for a specific disease entity or clinical case.  相似文献   

8.
With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three‐dimensional scaffolds that are intrinsically biocompatible, biodegradable, nontoxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on‐going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 821–833, 2014.  相似文献   

9.
Bisphosphonates are drugs used to treat various metabolic and malignant bone diseases. In the past 10 years intravenous bisphosphonates have been associated with increased risk of osteonecrosis of the jaw (ONJ). The aim of the present study is to evaluate platelet-rich plasma (PRP) wound healing benefits in multiple myeloma (MM) patients who developed ONJ after surgical tooth extraction. The study included 7 patients, 2 males and 5 females. All individuals had been taking zoledronate or pamidronate followed by zoledronate for an average of 5 years. Four subjects had only standard surgical debridement and sequestrectomy to treat the ONJ and three had additional autologous PRP. The patients were followed-up for 3 months. The use of PRP to enhance wound healing and reduce bone exposure seems to be a good treatment protocol in ONJ MM subjects.  相似文献   

10.
Bone regeneration and stem cells   总被引:1,自引:0,他引:1  
This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.  相似文献   

11.
BackgroundPlatelet-rich plasma has been largely used as a therapeutic option for the treatment of chronic wounds of different etiologies. The enhanced regeneration observed after the use of platelet-rich plasma has been systematically attributed to the growth factors that are present inside platelets' granules.AimWe hypothesize that the remaining plasma and platelet-bound fibronectin may act as a further bioactive protein in platelet-rich plasma preparations.MethodsRecent reports were analyzed and presented as direct evidences of this hypotheses.ResultsFibronectin may directly influence the extracellular matrix remodeling during wound repair. This effect is probably through matrix metalloproteinase expression, thus exerting an extra effect on chronic wound regeneration.ConclusionsPhysicians should be well aware of the possible fibronectin-induced effects in their future endeavors with PRP in chronic wound treatment.  相似文献   

12.
Hemoderivative materials are used to treat different diseases. These derivatives include platelet-rich plasma, serum, platelet gel, and platelet lysate (PL). Among them, PL contains more growth factors than the others and its production is inexpensive and easy. PL is one of the proper sources of platelet release factors. It is used in cells growth and proliferation and is a good alternative to fetal bovine serum. In recent years, the clinical use of PL has gained more appeal by scientists. PL is a solution saturated by growth factors, proteins, cytokines, and chemokines and is administered to treat different diseases such as wound healing, bone regeneration, alopecia, oral mucositis, radicular pain, osteoarthritis, and ocular diseases. In addition, it can be used in cell culture for cell therapy and tissue transplantation purposes. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor, transforming growth factor β, and vascular endothelial growth factor are key PL growth factors playing a major role in cell proliferation, wound healing, and angiogenesis. In this paper, we scrutinized recent advances in using PL and PL-derived growth factors to treat diseases and in regenerative medicine, and the ability to replace PL with other hemoderivative materials.  相似文献   

13.
14.
Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2′,7′-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a valid therapeutic approach for liver and gut lesions.  相似文献   

15.
Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological treatment for wound-healing and tissue regeneration in dolphins.  相似文献   

16.
Inflammation, re-epithelization and tissue remodeling are three essential steps during wound healing. The re-epithelization process plays the most important role which mainly involves keratinocyte proliferation and migration. miR-155 has been reported to participate in cell migration and transformation, however, its function in skin wound healing is largely unknown. Here we hypothesize that overexpression of miR-155 at wound edges could accelerate wound healing mediated by enhanced keratinocyte migration. To test this hypothesis, direct local injection of miR-155 expression plasmid to wound edges was conducted to overexpress miR-155 in vivo. Results shown that miR-155 significantly promoted wound healing and re-epithelization compared to control, while did not affect wound contraction. Also, miR-155 overexpression accelerated primarily cultured keratinocyte migration in vitro, but had no effect on cell proliferation. Importantly, western blot analysis shown that MMP-2 was significantly upregulated whiles its inhibitor TIMP-1 downregulated after miR-155 treatment. Moreover, the use of ARP-101, an MMP-2 inhibitor, effectively attenuated the accelerative effects on cell migration induced by miR-155. Taken together, our results suggest that miR-155 has the promote effect on wound healing that is probably mediated by accelerating keratinocyte migration via upregulated MMP-2 level. This study provides a rationale for the therapeutic effect of miR-155 on wound healing.  相似文献   

17.
This review covers the use of plasma technology relevant to the preparation of dressings for wound healing. The current state of knowledge of plasma treatments that have potential to provide enhanced functional surfaces for rapid and effective healing is summarized. Dressings that are specialized to the needs of individual cases of chronic wounds such as diabetic ulcers are a special focus. A summary of the biology of wound healing and a discussion of the various types of plasmas that are suitable for the customizing of wound dressings are given. Plasma treatment allows the surface energy and air permeability of the dressing to be controlled, to ensure optimum interaction with the wound. Plasmas also provide control over the surface chemistry and in cases where the plasma creates energetic ion bombardment, activation with long-lived radicals that can bind therapeutic molecules covalently to the surface of the dressing. Therapeutic innovations enabled by plasma treatment include the attachment of microRNA or antimicrobial peptides. Bioactive molecules that promote subsequent cell adhesion and proliferation can also be bound, leading to the recruitment of cells to the dressing that may be stem cells or patient-derived cells. The presence of a communicating cell population expressing factors promotes healing.  相似文献   

18.
Previous work in our laboratory has described several pro-angiogenic short peptides derived from endothelial extracellular matrices degraded by bacterial collagenase. Here we tested whether these peptides could stimulate wound healing in vivo. Our experiments demonstrated that a peptide created as combination of fragments of tenascin X and fibrillin 1 (comb1) applied into cranial dermal wounds created in mice treated with cyclophosphamide to impair wound healing, can improve the rate of wound closure. Furthermore, we identify and characterize a novel peptide (UN3) created and modified from two naturally-occurring peptides, which are present in human platelet-rich plasma. In vitro testing of UN3 demonstrates that it causes a 50% increase in endothelial proliferation, 250% increase in angiogenic response and a tripling of epithelial cell migration in response to injury. Results of in vivo experiments where comb1 and UN3 peptides were added together to cranial wounds in cyclophosphamide-treated mice leads to improvement of wound vascularization as shown by an increase of the number of blood vessels present in the wound beds. Application of the peptides markedly promotes cellular responses to injury and essentially restores wound healing dynamics to those of normal, acute wounds in the absence of cyclophosphamide impairment. Our current work is aimed at understanding the mechanisms underlying the stimulatory effects of these peptides as well as identification of the cellular receptors mediating these effects.  相似文献   

19.
Previous work from our laboratory and others has shown that, in some epithelia, the epithelial sodium channel (ENaC) increases its expression during wound healing. In these cases, inhibition of the channel determines a decrease in the healing rate, a result suggesting a role for ENaC in the overall healing process. To understand further this role of ENaC in epithelia, we explored the participation of ENaC in wound healing in four cultured epithelial cell lines selected on the basis of their different embryonic origins, function and modality of healing, i.e., by lamellipodial cell crawling or by actin cable formation. Three of the cell lines (bovine corneal endothelial cells, rabbit corneal epithelial cells and Madin-Darby canine kidney cells) exhibited an increase in ENaC expression and consequent membrane potential depolarization and an increase in cytosolic sodium and calcium, whereas one line (bovine aortal endothelial cells, BAEC) did not exhibit any of these changes. In all of the cell lines, however, ENaC inhibition determined a similar decrease in the rate of wound healing. In BAEC monolayers, the increase in ENaC activity produced plasma membrane depolarization, increased cytosolic sodium and calcium, and augmented the velocity of healing. These novel findings contribute to the idea that ENaC plays a critical role in wound healing in various epithelia, independently of the modality of healing and of any increase in the expression of the channel.  相似文献   

20.
Cutaneous wounds are among the most common soft tissue injuries and are particularly hard to heal in aging. Caloric restriction (CR) is well documented to extend longevity; pharmacologically, profound rejuvenative effects of CR mimetics have been uncovered, especially metformin (MET), resveratrol (RSV), and rapamycin (RAPA). However, locally applied impacts and functional differences of these agents on wound healing remain to be established. Here, we discovered that chronic topical administration of MET and RSV, but not RAPA, accelerated wound healing with improved epidermis, hair follicles, and collagen deposition in young rodents, and MET exerted more profound effects. Furthermore, locally applied MET and RSV improved vascularization of the wound beds, which were attributed to stimulation of adenosine monophosphate‐activated protein kinase (AMPK) pathway, the key mediator of wound healing. Notably, in aged skin, AMPK pathway was inhibited, correlated with impaired vasculature and reduced healing ability. As therapeutic approaches, local treatments of MET and RSV prevented age‐related AMPK suppression and angiogenic inhibition in wound beds. Moreover, in aged rats, rejuvenative effects of topically applied MET and RSV on cell viability of wound beds were confirmed, of which MET showed more prominent anti‐aging effects. We further verified that only MET promoted wound healing and cutaneous integrity in aged skin. These findings clarified differential effects of CR‐based anti‐aging pharmacology in wound healing, identified critical angiogenic and rejuvenative mechanisms through AMPK pathway in both young and aged skin, and unraveled chronic local application of MET as the optimal and promising regenerative agent in treating cutaneous wound defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号