首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
CREB Phosphorylation Promotes Nerve Cell Survival   总被引:11,自引:0,他引:11  
  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
A number of second messenger pathways propagate inductive signals via protein-protein interactions that are phosphorylation-dependent. The second messenger, cAMP, for example, promotes cellular gene expression via the protein kinase A-mediated phosphorylation of cAMP-response element-binding protein (CREB) at Ser(133), and this modification in turn stimulates the association of CREB with the co-activator, CREB-binding protein (CBP). The solution structure of the CREB.CBP complex, using relevant interaction domains, kinase inducible domain and kinase-induced domain interacting domain, referred to as KID and KIX, respectively, shows that KID undergoes a coil to helix transition, upon binding to KIX, that stabilizes complex formation. Whether such changes occur in the context of the full-length CREB and CBP proteins, however, is unclear. Here we characterize a novel antiserum that specifically binds to the CREB. CBP complex but to neither protein individually. Epitope mapping experiments demonstrate that the CREB.CBP antiserum detects residues in KID that undergo a conformational change upon binding to KIX. The ability of this antiserum to recognize full-length CREB.CBP complexes in a phospho-(Ser(133))-dependent manner demonstrates that the structural transition observed with the isolated KID domain also occurs in the context of the full-length CREB protein. To our knowledge, this is the first report documenting formation of endogenous cellular protein-protein complexes in situ.  相似文献   

16.
17.
18.
19.
Biological rhythms are driven in mammals by a central circadian clock located in the suprachiasmatic nucleus (SCN). Light-induced phase shifting of this clock is correlated with phosphorylation of CREB at Ser133 in the SCN. Here, we characterize phosphorylation of CREB at Ser142 and describe its contribution to the entrainment of the clock. In the SCN, light and glutamate strongly induce CREB Ser142 phosphorylation. To determine the physiological relevance of phosphorylation at Ser142, we generated a mouse mutant, CREB(S142A), lacking this phosphorylation site. Light-induced phase shifts of locomotion and expression of c-Fos and mPer1 in the SCN are significantly attenuated in CREB(S142A) mutants. Our findings provide genetic evidence that CREB Ser142 phosphorylation is involved in the entrainment of the mammalian clock and reveal a novel phosphorylation-dependent regulation of CREB activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号