首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Wnt and Src pathways are widely used signal transduction pathways in development. β-catenin is utilized in both pathways, as a signal transducer and a component of the cadherin cell adhesion complex, respectively. A C. elegans β-catenin HMP-2 is involved in cell adhesion, but its signaling role has been unknown. Here, we report that in early embryogenesis HMP-2 acts as a signaling molecule in the Src signal. During early embryogenesis in C. elegans, the Wnt and Src pathways are redundantly involved in endoderm induction at the four-cell stage and spindle orientation in an ABar blastomere. RNAi experiments demonstrated that HMP-2 functions in the Src pathway, but in parallel with the Wnt pathway in these processes. HMP-2 localized at the cell boundaries and nuclei, and its localization at cell boundaries was negatively regulated by SRC-1. In addition, HMP-2 was Tyr-phosphorylated in a SRC-1-dependent manner in vivo. Taken together, we propose that HMP-2 functions downstream of the Src signaling pathway and contribute to endoderm induction and ABar spindle orientation, in parallel with the Wnt signaling pathway.  相似文献   

2.
The simplicity of C. elegans makes it an outstanding system to study the role of Wnt signaling in development. Many asymmetric cell divisions in C. elegans require the Wnt/beta-catenin asymmetry pathway. Recent studies confirm that SYS-1 is a structurally and functionally divergent beta-catenin, and implicate lipids and retrograde trafficking in maintenance of WRM-1/beta-catenin asymmetry. Wnts also regulate short-range events such as spindle rotation and gastrulation, and a PCP-like pathway regulates asymmetric divisions. Long-range, cell non-autonomous Wnt signals regulate vulval induction. Both short-range and long-range Wnt signal s are regulated by recycling of MIG-14/Wntless via the retromer complex. These studies indicate that C. elegans continues to be useful for identifying new, conserved mechanisms underlying Wnt signaling in metazoans.  相似文献   

3.
The three Caenorhabditis elegans beta-catenin each function in distinct processes: BAR-1 in canonical Wnt signaling that controls cell fates and cell migrations, HMP-2 in cell adhesion and WRM-1 in Wnt signaling pathways that function in conjunction with a mitogen-activated kinase (MAPK) pathway to control the orientations, or cell polarities, of cells that undergo asymmetric cell divisions. In addition, WRM-1 does not interact with the canonical beta-catenin binding site in POP-1/Tcf. Thus, Wnt signaling through WRM-1 is noncanonical and, except for one division that might not include any of the three C. elegans beta-catenin, controls cell polarity in C. elegans.  相似文献   

4.
5.
In early C. elegans embryos, signaling between a posterior blastomere, P2, and a ventral blastomere, EMS, specifies endoderm and orients the division axis of the EMS cell. Although Wnt signaling contributes to this polarizing interaction, no mutants identified to date abolish P2/EMS signaling. Here, we show that two tyrosine kinase-related genes, src-1 and mes-1, are required for the accumulation of phosphotyrosine between P2 and EMS. Moreover, src-1 and mes-1 mutants strongly enhance endoderm and EMS spindle rotation defects associated with Wnt pathway mutants. SRC-1 and MES-1 signal bidirectionally to control cell fate and division orientation in both EMS and P2. Our findings suggest that Wnt and Src signaling function in parallel to control developmental outcomes within a single responding cell.  相似文献   

6.
Correct orientation of the mitotic spindle is crucial for the proper segregation of localized determinants and the correct spatial organization of cells in early embryos. The cues dividing cells use to orient their mitotic spindles are currently the subject of intensive investigation in a number of model systems. One of the cues that cells use during spindle orientation is provided by components of the Wnt signaling pathway. Because of its stereotypical cleavage divisions, the availability of Wnt pathway mutants and the ability to perform RNAi, and because cell-cell interactions can be studied in vitro, the C. elegans embryo continues to be a useful system for identifying specific cell-cell interactions in which Wnt-dependent signals polarize the mitotic spindle. This review discusses the evidence for involvement of Wnt signaling during spindle orientation in several contexts in the early C. elegans embryo, a process that involves upstream Wnt effectors but does not involve downstream nuclear effectors of Wnt signaling, and places this Wnt spindle orientation pathway in the larger context of other known modulators of spindle orientation in animal embryos.  相似文献   

7.
8.
9.
G-protein signaling plays important roles in asymmetric cell division. In C. elegans embryos, homologs of receptor-independent G protein activators, GPR-1 and GPR-2 (GPR-1/2), function together with Galpha (GOA-1 and GPA-16) to generate asymmetric spindle pole elongation during divisions in the P lineage. Although Galpha is uniformly localized at the cell cortex, the cortical localization of GPR-1/2 is asymmetric in dividing P cells. In this report, we show that the asymmetry of GPR-1/2 localization depends on PAR-3 and its downstream intermediate LET-99. Furthermore, in addition to its involvement in spindle elongation, Galpha is required for the intrinsically programmed nuclear rotation event that orients the spindle in the one-cell. LET-99 functions antagonistically to the Galpha/GPR-1/2 signaling pathway, providing an explanation for how Galpha-dependent force is regulated asymmetrically by PAR polarity cues during both nuclear rotation and anaphase spindle elongation. In addition, Galpha and LET-99 are required for spindle orientation during the extrinsically polarized division of EMS cells. In this cell, both GPR-1/2 and LET-99 are asymmetrically localized in response to the MES-1/SRC-1 signaling pathway. Their localization patterns at the EMS/P2 cell boundary are complementary, suggesting that LET-99 and Galpha/GPR-1/2 signaling function in opposite ways during this cell division as well. These results provide insight into how polarity cues are transmitted into specific spindle positions in both extrinsic and intrinsic pathways of asymmetric cell division.  相似文献   

10.
11.
Wnt signaling pathways are essential in various developmental processes including differentiation, proliferation, cell migration, and cell polarity. Wnt proteins execute their multiple functions by activating distinct intracellular signaling cascades, although the mechanisms underlying this activation are not fully understood. We identified a novel Daple-like protein in Xenopus and named it xDal (Xenopus Daple-like). As with Daple, xDal contains several leucine zipper-like regions (LZLs) and a putative PDZ domain-binding motif, and can interact directly with the dishevelled protein. In contrast to mDaple, injection of xDal mRNA into the dorso-vegetal blastomere does not induce ventralization and acted synergistically with xdsh in secondary axis induction. XDal also induced expression of siamois and xnr-3, suggesting that XDal functions as a positive regulator of the Wnt/beta-catenin pathway. Injection of xDal mRNA into the dorso-animal blastomere, however, induced gastrulation-defective phenotypes in a dose-dependent manner. In addition, xDal inhibited activin-induced elongation of animal caps and enhanced c-jun phosphorylation. Based on these findings, xDal is also thought to function in the Wnt/JNK pathway. Moreover, functional domain analysis with several deletion mutants indicated that xDal requires both a putative PDZ domain-binding motif and at least one LZL for its activity. These findings with xDal will provide new information on the Wnt signaling pathways.  相似文献   

12.
The orientation of cell division has a crucial role in early embryo body plan specification, axis determination and cell fate diversity generation, as well as in the morphogenesis of tissues and organs. In many instances, cell division orientation is regulated by the planar cell polarity (PCP) pathways: the Wnt/Frizzled non-canonical pathway or the Fat/Dachsous/Four-jointed pathway. Firstly, using asymmetric cell division in both Drosophila and C. elegans, we describe the central role of the Wnt/Frizzled pathway in the regulation of asymmetric cell division orientation, focusing on its cooperation with either the Src kinase pathway or the heterotrimeric G protein pathway. Secondly, we describe our present understanding of the mechanisms by which the planar cell polarity pathways drive tissue morphogenesis by regulating the orientation of symmetric cell division within a field of cells. Finally, we will discuss the important avenues that need to be explored in the future to better understand how planar cell polarity pathways control embryo body plan determination, cell fate specification or tissue morphogenesis by mitotic spindle orientation.  相似文献   

13.
Asymmetric division is an important property of stem cells. In Caenorhabditis elegans, the Wnt/beta-catenin asymmetry pathway determines the polarity of most asymmetric divisions. The Wnt signalling components such as beta-catenin localize asymmetrically to the cortex of mother cells to produce two distinct daughter cells. However, the molecular mechanism to polarize them remains to be elucidated. Here, we demonstrate that intracellular phospholipase A(1) (PLA(1)), a poorly characterized lipid-metabolizing enzyme, controls the subcellular localizations of beta-catenin in the terminal asymmetric divisions of epithelial stem cells (seam cells). In mutants of ipla-1, a single C. elegans PLA(1) gene, cortical beta-catenin is delocalized and the asymmetry of cell-fate specification is disrupted in the asymmetric divisions. ipla-1 mutant phenotypes are rescued by expression of ipla-1 in seam cells in a catalytic activity-dependent manner. Furthermore, our genetic screen utilizing ipla-1 mutants reveals that reduction of endosome-to-Golgi retrograde transport in seam cells restores normal subcellular localization of beta-catenin to ipla-1 mutants. We propose that membrane trafficking regulated by ipla-1 provides a mechanism to control the cortical asymmetry of beta-catenin.  相似文献   

14.
Bowerman B 《Cell》2005,121(5):662-664
In this issue of Cell, Kidd and colleagues (Kidd et al., 2005) describe their identification of a novel beta-catenin that functions in noncanonical C. elegans Wnt signaling pathways to specify the different fates of daughter cells produced by asymmetric cell division.  相似文献   

15.
Nucleoporins are components of the nuclear pore, which is required for nucleo-cytoplasmic transport. We report a role for a subclass of nucleoporins in orienting the mitotic spindle in C. elegans embryos. RNAi-mediated depletion of any of five putative nucleoporins npp-1, npp-3, npp-4, npp-11, and npp-13 leads to indistinguishable spindle orientation defects. Transgenic worms expressing NPP-1::GFP or NPP-11::GFP show GFP localization at the nuclear envelope, consistent with their predicted function. NPP-1 interacts with the other nucleoporins in yeast two-hybrid assays, suggesting that the proteins affect spindle orientation by a common process. The failed orientation phenotype of npp-1(RNAi) is at least partially epistatic to the ectopic spindle rotation in the AB blastomere of par-3 mutant embryos. This suggests that NPP-1 contributes to the mechanics of spindle orientation. However, NPP-1 is also required for PAR-6 asymmetry at the two-cell stage, indicating that nucleoporins may be required to define cortical domains in the germ line blastomere P1. Nuclear envelope structure is abnormal in npp-1(RNAi) embryos, but the envelope maintains its integrity, and most nuclear proteins we assayed accumulate normally. These findings raise the possibility that these nucleoporins may have direct roles in orienting the mitotic spindle and the maintenance of cell polarity.  相似文献   

16.
Frizzled receptors are components of the Wnt signalling pathway, but how they activate the canonical Wnt/beta-catenin pathway is not clear. Here we use three distinct vertebrate frizzled receptors (Xfz3, Xfz4 and Xfz7) and describe whether and how their C-terminal cytoplasmic regions transduce the Wnt/beta-catenin signal. We show that Xfz3 activates this pathway in the absence of exogenous ligands, while Xfz4 and Xfz7 interact with Xwnt5A to activate this pathway. Analysis using chimeric receptors reveals that their C-terminal cytoplasmic regions are functionally equivalent in Wnt/beta-catenin signalling. Furthermore, a conserved motif (Lys-Thr-X-X-X-Trp) located two amino acids after the seventh transmembrane domain is required for activation of the Wnt/beta-catenin pathway and for membrane relocalization and phosphorylation of Dishevelled. Frizzled receptors with point mutations affecting either of the three conserved residues are defective in Wnt/beta-catenin signalling. These findings provide functional evidence supporting a role of this conserved motif in the modulation of Wnt signalling. They are consistent with the genetic features exhibited by Drosophila Dfz3 and Caenorhabditis elegans mom-5 in which the tryptophan is substituted by a tyrosine.  相似文献   

17.
Genetic studies on endoderm-mesoderm specification in Caenorhabditis elegans have demonstrated a role for several Wnt cascade components as well as for a MAPK-like pathway in this process. The latter pathway includes the MAPK kinase kinase-like MOM-4/Tak1, its adaptor TAP-1/Tab1, and the MAPK-like LIT-1/Nemo-like kinase. A model has been proposed in which the Tak1 kinase cascade counteracts the Wnt cascade at the level of beta-catenin/TCF phosphorylation. In this model, the signal that activates the Tak1 kinase cascade is unknown. As an alternative explanation of these genetic data, we have explored whether Tak1 is directly activated by Wnt. We find that Wnt1 stimulation results in autophosphorylation and activation of MOM-4/Tak1 in a TAP-1/Tab1-dependent fashion. Wnt1-induced Tak1 stimulation activates Nemo-like kinase, resulting in the phosphorylation of TCF. Our results combined with the genetic data from C. elegans imply a mechanism whereby Wnt directly activates the MOM-4/Tak1 kinase signaling pathway. Thus, Wnt signal transduction through the canonical pathway activates beta-catenin/TCF, whereas Wnt signal transduction through the Tak1 pathway phosphorylates and inhibits TCF, which might function as a feedback mechanism.  相似文献   

18.
Wnt/beta-catenin signaling and cardiogenesis: timing does matter   总被引:1,自引:0,他引:1  
Recent findings in mouse and zebrafish embryos, as well as in embryonic stem cells, emphasize the critical importance of the Wnt/beta-catenin pathway in the regulation of cardiogenesis, and highlight the exquisite timing and specific cellular responses by which this signaling pathway exerts its influence. These studies clearly demonstrate that the Wnt/beta-catenin pathway plays distinct, even opposing, roles during various stages of cardiac development.  相似文献   

19.
Wnt signaling is critical to many aspects of development, and aberrant activation of the Wnt signaling pathway can cause cancer. Dishevelled (Dvl) protein plays a central role in this pathway by transducing the signal from the Wnt receptor complex to the beta-catenin destruction complex. Dvl also plays a pivotal role in the planar cell polarity pathway that involves the c-Jun N-terminal kinase (JNK). How functions of Dvl are regulated in these two distinct pathways is not clear. We show that deleting the C-terminal two-thirds of Dvl, which includes the PDZ and DEP domains and is essential for Dvl-induced JNK activation, rendered the molecule a much more potent activator of the beta-catenin pathway. We also found that casein kinase Iepsilon (CKIepsilon), a previously identified positive regulator of Wnt signaling, stimulated Dvl activity in the Wnt pathway, but dramatically inhibited Dvl activity in the JNK pathway. Consistent with this, overexpression of CKIepsilon in Drosophila melanogaster stimulated Wnt signaling and disrupted planar cell polarity. We also observed a correlation between the localization and the signaling activity of Dvl in the beta-catenin pathway and the JNK pathway. Furthermore, by using RNA interference, we demonstrate that the Drosophila CKIepsilon homologue Double time positively regulates the beta-catenin pathway through Dvl and negatively regulates the Dvl-induced JNK pathway. We suggest that CKIepsilon functions as a molecular switch to direct Dvl from the JNK pathway to the beta-catenin pathway, possibly by altering the conformation of the C terminus of Dvl.  相似文献   

20.
The polarities of several cells that divide asymmetrically during Caenorhabditis elegans development are controlled by Wnt signaling. LIN-44/Wnt and LIN-17/Fz control the polarities of cells in the tail of developing C. elegans larvae, including the male-specific blast cell, B, that divides asymmetrically to generate a larger anterior daughter and a smaller posterior daughter. We determined that WRM-1 and the major canonical Wnt pathway components: BAR-1, SGG-1/GSK-3 and PRY-1/Axin were not involved in the control of B cell polarity. However, POP-1/Tcf is involved and is asymmetrically distributed to the B daughter nuclei, as it is in many cell divisions during C. elegans development. Aspects of the B cell division are reminiscent of the divisions controlled by the planar cell polarity (PCP) pathway that has been described in both Drosophila and vertebrate systems. We identified C. elegans homologs of Wnt/PCP signaling components and have determined that many of them appear to be involved in the regulation of B cell polarity. Specifically, MIG-5/Dsh, RHO-1/RhoA and LET-502/ROCK appear to play major roles, while other PCP components appear to play minor roles. We conclude that a noncanonical Wnt pathway, which is different from other Wnt pathways in C. elegans, regulates B cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号