首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-Oxo-L-prolinase catalyzes the virtually complete hydrolysis of 5-oxo-L-proline (L-pyroglutamate) to L-glutamate. The thermodynamic driving force for this endergonic amide hydrolysis is supplied by the coupled stoichiometric hydrolysis of ATP to ADP and Pi. We report here that the efficiency of the coupling between nucleotide and amide hydrolysis is dependent on the nucleotide base. Thus, with both ATP and dATP there is one to one stoichiometry between nucleotide cleavage and 5-oxoproline hydrolysis. With ITP, GTP, or UTP, however, the hydrolysis of NTP exceeds amide hydrolysis by 6 to 50-fold. In the absence of 5- oxoproline, the enzyme catalyzes a slow ATPase reaction, but it catalyzes very rapid ITPase, GTPase and UTPase reactions. These NTPase reactions, which under some conditions are faster than the ATP-mediated overall coupled reaction, are inhibited by 5-oxoproline and by analogs of 5-oxoproline that bind to the enzyme.  相似文献   

2.
5-Oxo-L-prolinase from Pseudomonas putida is composed of two reversibly dissociable proteins: Component A catalyzes 5-oxoproline-dependent cleavage of ATP, but does not catalyze the decyclization of 5-oxoproline; Component B is required for the coupling of ATP cleavage to ring-opening of 5-oxoproline to form glutamate (Seddon, A. P., Li, L., and Meister, A. (1984) J. Biol. Chem. 259, 8091-8094). We describe here the purifications of Components A and B to apparent homogeneity and the interactions between these two proteins. The cellular content of Component B activity is significantly greater than that of Component A. By gel filtration, Component A is a hexamer; but in the presence of substrates, it is a dimer. Component B can exist as an aggregate, an octamer, or a tetramer, depending upon the conditions used. Gel filtration of a mixture of Components A and B in the presence of substrates gives a unique protein species that exhibits 5-oxoprolinase activity. The Mr of this Component A-Component B complex indicates that it probably has an A2-B2 structure. The molar ratio of Component A to Component B in the complex was determined to be 1:1 by the continuous variation method (Job). Titrations of each component by the other suggest that phosphorylated 5-oxoproline-bound Component A is the entity that interacts with Component B. These studies indicate that the binding of phosphorylated 5-oxoproline-bound Component A to Component B to form a complex proceeds by a cooperative type mechanism. This is supported by the observed shifts of the intersection points of the Job curves (see Appendix).  相似文献   

3.
Bacterial 5-oxoprolinase is composed of two protein components: Component A, which catalyzes 5-oxoproline-dependent ATP-hydrolysis and Component B, which couples the hydrolysis of ATP with the decyclization of 5-oxoproline to form glutamate (Seddon, A. P., Li, L., and Meister, A. (1984) J. Biol. Chem. 259, 8091-8094). Studies on this unusual enzyme system have led to evidence that an intermediate is formed by Component A. Application of the isotope-trapping method demonstrated an activated 5-oxoproline intermediate, whose formation requires ATP, Mg2+, and Component A. The amount of ATP-dependent trapping was close to the number of enzyme active sites. The intermediate formed by Component A was shown to be reducible by potassium borohydride to proline in low yield; when Component B was added, the formation of proline was abolished. Treatment of reaction mixtures containing Component A, 5-oxoproline, and [gamma-32P] ATP with diazomethane led to appearance of a 32P-labeled compound (found on thin layer chromatography), whose formation was significantly reduced when Component B was present. The new compound, which is labile, breaks down to form dimethyl[32P]phosphate. The total amount of dimethyl[32P]phosphate formed after breakdown is close to the number of active sites of Component A. The data are consistent with the conclusion that a phosphorylated form of 5-oxoproline is formed by Component A and suggest that Component B is required for conversion of this intermediate to glutamate.  相似文献   

4.
5-Oxo-L-prolinase, an enzyme that catalyzes the conversion of 5-oxo-L-proline (L-pyroglutamate; L-2-pyrrolidone-5-carboxylate) to L-glutamate coupled with the cleavage of ATP to ADP and Pi, has been purified about 1600-fold from rat kidney. Purification was carried out in the presence of 5-oxo-L-proline which protects the enzyme under a variety of conditions. An estimate of the molecular weight (about 325,000) was made by gel filtration on Sephadex G-200. K+ (or NH4+) and Mg2+ were required for activity. GTP, ITP, CTP, and UTP were much less active than ATP; dATP was 43% as active as ATP. ADP inhibited and addition of pyruvate kinase and phosphoenolpyruvate activated the reaction. The enzyme, which is protected during storage by dithiothreitol, is inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide, and iodoacetamide. The apparent Km values for 5-oxo-L-proline and ATP are, respectively, 0.05 and 0.17 mM. The pH profile indicates a broad range of activity from about pH 5.5 to pH 11.2 with apparent maxima at about pH 7 and pH 9.7. The formation of Pi and glutamate was equimolar over a wide pH range. When the enzyme was incubated with ATP, Mg2+, K+, and L-2-imidazolidone-4-carboxylate or L-dihydroorotate, cleavage of ATP to ADP and Pi occurred, but no cleavage of the imino acid substrates was observed; when the enzyme was incubated under these conditions with 2-piperidone-6-carboxylate, 4-oxy-5-oxoproline, and 3-oxy-5-oxoproline, the corresponding dicarboxylic amino acids were formed, but the molar ratio of Pi to amino acid formation was significantly greater than unity.  相似文献   

5.
Rat kidney 5-oxo-L-prolinase catalyzes the endergonic hydrolysis of 5-oxo-L-proline (L-pyroglutamate, L-2-pyrrolidone-5-carboxylate) to form L-glutamate; the reaction is driven by and dependent on the stoichiometric concomitant hydrolysis of ATP to ADP and inorganic phosphate. The present studies are concerned with the mechanism by which the free energy of ATP hydrolysis is conserved and made available for 5-oxoproline hydrolysis. Studies with 18O-labeled substrates showed that (a) all three oxygen atoms of 5-oxoproline are recovered in the product glutamate, and (b) the two water molecules consumed in the reaction contribute one oxygen atom to inorganic phosphate and one oxygen atom to the gamma-carboxyl group of glutamate. It was shown that the enzyme also catalyzes the intrinsically exergonic hydrolysis of alpha-hydroxyglutarate lactone, a reaction that is ATP-dependent. Intermediates in the 5-oxoprolinase reaction were not detected by exchange experiments with radioactive ADP and phosphate, nor were they trapped by adding hydroxylamine. In the presence of very high glutamate concentrations, a slow reversal of the 5-oxoprolinase reaction was demonstrated by measuring ATP formation. The findings are consistent with a mechanism in which 5-oxo-L-proline is phosphorylated by ATP on the amide carbonyl oxygen and the resulting intermediate is subsequently hydrolyzed to yield gamma-glutamyl phosphate; the latter is hydrolyzed to glutamate and inorganic phosphate.  相似文献   

6.
5-Oxoprolinase catalyzes the coupled hydrolysis of ATP and 5-oxoproline to yield glutamate, ADP, and Pi; the reaction may be partially or completely uncoupled by structural modification of either substrate. In the present work, we found slow 5-oxoproline-dependent changes in the rates of hydrolysis of ITP, GTP, and UTP. For example, in the absence of 5-oxoproline, the enzyme catalyzes the hydrolysis of UTP at a rapid and constant rate. Following addition of 5-oxo-L-proline, the rate of hydrolysis decreases slowly; after about 25 min, a much slower and constant rate of hydrolysis is attained. This change in rate is associated with a decrease in Vmax and an increase in the Km for UTP. In similar studies with ATP, both Vmax and Km increase over a much shorter time period (less than 10 s). The findings indicate that 5-oxoprolinase is a hysteretic enzyme, and are consistent with the hypothesis that in the normal catalytic reaction, the binding of both ATP and 5-oxo-proline to the enzyme induces a conformational change that brings the substrates into a juxtaposition that facilitates the reaction.  相似文献   

7.
5-Oxoprolinase catalyzes the ATP-dependent decyclization of 5-oxo-L-proline to L-glutamate. Previous studies provided evidence for the intermediate formation of a phosphorylated form of 5-oxoproline (Seddon, A. P., and Meister, A. (1986) J. Biol. Chem. 261, 11538-11541) and of a tetrahedral intermediate (Li, L., Seddon, A. P., and Meister, A. (1987) J. Biol. Chem. 262, 11020-11025). A new approach to the study of the reaction mechanism using the 18O isotope effect on the 13C NMR signals for 5-oxoproline and glutamate is reported here. The 13C chemical shifts induced by 18O substitution for the carbonyl group of 5-oxoproline and the gamma-carboxyl group of glutamate are about 0.03 ppm with respect to the corresponding 16O-compounds. Using 5-[18O]oxo[5-13C]proline (97 and 79.5 atom % excess, 13C and 18O, respectively), the disappearance of the 18O-labeled and unlabeled 5-oxoproline and formation of the corresponding glutamate species were followed in the reactions catalyzed by purified preparations of 5-oxoprolinase isolated from Pseudomonas putida and from rat kidney. This procedure permits simultaneous determinations of the rates of 18O exchange and of the overall decyclization reaction. The ratios of 18O exchange rates to the overall reaction rates for the bacterial and kidney enzyme catalyzed-reactions were 0.28 and 0.14, respectively. The findings support the view that the coupling of ATP hydrolysis to 5-oxoproline decyclization involves formation of a phosphorylated tetrahedal intermediate. Although the exchange phenomena are consistent with the mechanistic interpretations, they seem not to be required for catalysis.  相似文献   

8.
Purification of a RecA protein analogue from Bacillus subtilis   总被引:29,自引:0,他引:29  
We have identified in Bacillus subtilis an analogue of the Escherichia coli RecA protein. Its activities suggest that it has a corresponding role in general genetic recombination and in regulation of SOS (DNA repair) functions. The B. subtilis protein (B. subtilis Rec) has a Mr of 42,000 and cross-reacts with antisera raised against E. coli RecA protein. Its level is significantly reduced in the recombination-deficient recE4 mutant. B. subtilis Rec is induced 10- to 20-fold in rec+ strains following treatment with mitomycin C, whereas it is not induced in the recombination-deficient mutants recE4, recE45, and recA1. We have purified B. subtilis Rec about 2000-fold to near homogeneity and we describe its activities. It catalyzes DNA-dependent hydrolysis of dATP at a rate comparable to that of E. coli RecA protein. However, B. subtilis Rec has a negligible ATPase activity, although ATP effectively inhibits dATP hydrolysis. In the presence of dATP, B. subtilis Rec catalyzes DNA strand transfer, assayed by the conversion of phi X174 linear duplex DNA and homologous circular single-stranded DNA to replicative form II (circular double-stranded DNA with a discontinuity in one strand). ATP does not support strand transfer by this protein. B. subtilis Rec catalyzes proteolytic cleavage of E. coli LexA repressor in a reaction that requires single-stranded DNA and nucleoside triphosphate. This result suggests that an SOS regulatory system like the E. coli system is present in B. subtilis. The B. subtilis enzyme does not promote any detectable cleavage of the E. coli bacteriophage lambda repressor.  相似文献   

9.
5-Oxo-L-prolinase (5-OPase) catalyses the hydrolysis of 5-oxo-L-proline to glutamate with concomitant stoichiometric cleavage of ATP to ADP, a reaction which is known to be part of the gamma-glutamyl cycle-an interrelated series of reactions involved in the synthesis and metabolism of glutathione. As recent studies indicate, this cyclic pathway plays a crucial role in the regulation of amino acid transport. Apparently, the intermediate product 5-oxo-L-proline functions as a second messenger molecule that upregulates the activity of certain amino acid transport systems. Thus, the degradation of 5-oxo-L-proline by 5-OPase leads to the downregulation of this stimulus. In this study, a new sensitive fluorimetric assay for 5-OPase activity was established which is based on the derivatization of glutamate with o-phthaldialdehyde in the presence of thiols and subsequent separation of the products by HPLC. The method is suitable for the screening of chromatography fractions as well as for the determination of the kinetic parameters Km and Vmax of purified 5-OPase. Additionally, it can be used for the measurement of enzyme activity in crude cell extracts and evaluation of tissue distribution.  相似文献   

10.
M A Geeves  D R Trentham 《Biochemistry》1982,21(11):2782-2789
The time course of formation and decay of protein-bound adenosine 5'-triphosphate (ATP) has been monitored during single turnovers of the myosin subfragment 1 ATPase with nonspectrophotometric techniques. The rate constant controlling the ATP cleavage step increases markedly with ionic strength, so that in low salt the protein--ATP complex is observed transiently at higher concentration than the protein-products complex. The kinetics of the ATP cleavage step in a single turnover of the actosubfragment 1 ATPase indicates that under appropriate conditions this step is partially rate limiting during overall steady-state ATPase activity. It follows that a binary subfragment 1-ATP complex is a significant component of the steady-state intermediate of the actosubfragment 1 ATPase. Transient kinetic studies of ATP and adenosine 5'-(3-thiotriphosphate) [ATP (gamma S)] binding show directly that a substrate-induced protein isomerization accompanies ligand binding. The rate constant of the isomerization is 170 s-1 at pH 7.0, 15 degrees C, and 0.01 M ionic strength. Under these conditions nucleotide binding appears to be accompanied by a protein fluorescence increase that is 50% of the increase associated with magnesium-dependent steady-state ATPase activity.  相似文献   

11.
In addition to protease La (the lon gene product), Escherichia coli contains another ATP-dependent protease, Ti. This enzyme (approximately 340 kDa) is composed of two components, both of which are required for proteolysis. Both have been purified to homogeneity by conventional procedures using [3H]casein as the substrate. The ATP-stabilized component, A, has a subunit molecular weight of 80,000 upon gel electrophoresis in the presence of sodium dodecyl sulfate, but it behaves as a dimer (140 kDa) upon gel filtration. Component P, which is relatively heat stable, is inactivated by diisopropyl fluorophosphate and can be labeled with [3H] diisopropyl fluorophosphate. It has a subunit size of 23 kDa, but the isolated component behaves as a complex (260 kDa) of 10-12 subunits. The isoelectric point of component A is 7.0 and that of P is 8.2, and their amino acid compositions differ considerably. The purified enzyme has an ATPase activity that is stimulated 2-4-fold by casein and other protein substrates but not by nonhydrolyzed proteins. Component A also shows ATPase activity which can be stimulated by casein. Addition of component P (which lacks ATPase activity) inhibits basal ATP hydrolysis by A and makes this ATPase more responsive to casein. Although component P contains the serine active site for proteolysis, it shows no proteolytic activity in the absence of component A, Mg2+, and ATP or dATP. Other nucleoside triphosphates are not hydrolyzed and do not support proteolysis. Protease Ti has a Km for ATP of 210 microM for hydrolysis of both casein and ATP. Casein increases the Vmax for ATP without affecting the Km. A Mg2+ concentration of 5 mM is necessary for half-maximal rates of ATP and casein hydrolysis. Ca2+ and Mn2+ partially support these activities. Thus, protease Ti shares many unusual properties with protease La (e.g. coupled ATP and protein hydrolysis and protein-activated ATPase), but these functions in protease Ti are associated with distinct subunits that modify each other's activities.  相似文献   

12.
A new assay for the determination of 5-oxoprolinase activity is described. The enzyme 5-oxoprolinase was purified from rat kidney 285-fold to apparent homogeneity, as judged by analytical disc electrophoresis and discontinous polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate. The specific activity of the preparation was 122 mU/mg of protein. A complete initial rate kinetic analysis of the forward reaction catalyzed by 5-oxoprolinase was carried out using 5-oxo-L-proline and MgATP2theta as substrates. The computer-fitted double reciprocal plots showed intersecting patterns indicating a sequential mechanism. The data were fitted by weighted linear regression analysis using the complete equation for bisubstrate reactions. The limiting Michaelis constants for 5-oxoproline and MgATP2theta were calculated to be 31.6 +/- 2.3 muM and 172.7 +/- 11.5muM, respectively. The maximum forward rate is 1.2 +/- 0.02 mumol X min-1; the turnover number 7.0 min-1.  相似文献   

13.
The recA1 mutation is a single point mutation that replaces glycine 160 of the recA polypeptide with an aspartic acid residue. The mutant recA1 protein has a greatly reduced single-stranded DNA-dependent ATPase activity at pH 7.5 compared to the wild-type protein. Interestingly, the recA1 protein does exhibit a vigorous ATPase activity at pH 6.2. To explore the molecular basis of this pH effect, we used site-directed mutagenesis to replace aspartic acid 160 of the recA1 polypeptide with an isosteric, but nonionizing, asparagine residue. The new [Asn160]recA protein catalyzes ATP hydrolysis at pH 7.5 with the same turnover number as the wild-type protein. This result suggests that the activation of the recA1 protein ATPase activity that occurs at pH 6.2 may be due, in part, to neutralization of the negatively charged aspartic acid 160 side chain. Although it is an active single-stranded DNA-dependent ATPase, the [Asn160]recA protein is unable to complement a recA deletion in vivo and is unable to carry out the three-strand exchange reaction in vitro. Further examination of ATP hydrolysis (under strand exchange conditions) revealed that the ATPase activity of the [Asn160]recA protein is strongly suppressed in the presence of Escherichia coli single-stranded DNA-binding protein (a component of the strand exchange assay), whereas the ATPase activity of the wild-type recA protein is stimulated by the E. coli protein. To account for these results, we speculate that ATP may induce specific conformational changes in the wild-type recA protein that are essential to the DNA pairing process and that these conformational changes may not occur with the [Asn160]recA protein.  相似文献   

14.
C A O'Brian  N E Ward 《Biochemistry》1990,29(18):4278-4282
Protein kinase C (PKC) consists of a family of Ca2(+)- and phospholipid-dependent protein kinases that catalyze the transfer of the gamma-phosphate of ATP to phosphoacceptor serine or threonine residues of protein and peptide substrates. In this report, we demonstrate that purified, autophosphorylated rat brain PKC catalyzes a Ca2(+)- and phospholipid-dependent ATPase reaction, that appears to represent the bond-breaking step of its phosphotransferase reaction. The histone kinase and ATPase activities of PKC each had a Kmapp of 6 microM for ATP, and their metal ion cofactor requirements were similar. The rate of the Ca2(+)- and phospholipid-dependent PKC-catalyzed ATPase reaction was approximately 5 times slower than the rate of histone phosphorylation, but the basal rates of the PKC-catalyzed ATPase and histone kinase activities differed by less than a factor of 2. The mechanism of the ATPase reaction could entail either direct hydrolysis of ATP by water or formation of a stable phosphoenzyme (PKC-P) followed by its hydrolysis (PKC + Pi). The latter mechanism appears unlikely since [gamma-32P]ATP failed to label autophosphorylated PKC. Furthermore, the PKC preparation did not contain contaminating protein phosphatases, excluding the possibility that the ATPase activity represented dephosphorylation of contaminating PKC substrates. Therefore, our results suggest that water may effectively compete with protein substrates of PKC for the gamma-phosphate of ATP. Using PKC inhibitors and activators, we found that the ATPase and protein kinase activities of PKC were regulated analogously, providing evidence that allosteric activation of PKC involves facilitation of the bond-breaking step of the phosphotransferase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Nuclear pre-mRNA splicing requires ATP at several steps from spliceosome assembly to product release. Here, we demonstrate that an integral component of the 20S U5 snRNP is an RNA-dependent ATPase. The ATPase activity of 20S U5 and 25S [U4/U6.U5] snRNPs purified by glycerol gradient centrifugation is strongly stimulated by homopolymeric RNA but not ssDNA. Purified 12S Ul and U2 snRNPs do not exhibit ATPase activity. Moreover, the U5-associated NTPase specifically hydrolyzes ATP and dATP. The additional purification of 20S U5 snRNPs by Mono Q chromatography does not affect the efficiency of ATP hydrolysis. Both U5 and tri-snRNPs bind ATP stoichiometrically in an RNA-independent manner. A candidate ATPase was identified by UV-irradiation of purified snRNPs with radiolabeled ATP. In the presence of homopolymeric RNA, the 200 kDa U5-specific protein is the major crosslinked protein, even in Mono Q-purified U5 snRNPs. The correlation between RNA-dependent ATPase activity in the U5 snRNP and the RNA-dependent onset of this crosslink strongly suggests that the 200 kDa protein is an RNA-dependent ATPase. Furthermore, both the formation of the crosslink and ATPase activity appear with a similar substrate specificity for ATP.  相似文献   

16.
The DNA strand-transfer reaction of bacteriophage Mu requires Mu B protein and ATP for high efficiency. These factors facilitate the capture of target DNA by the donor protein-DNA complex. To understand the mechanism of the Mu B ATPase cycle in the Mu DNA strand-transfer reaction, we undertook a steady-state kinetic analysis of Mu B ATPase. The results reveal complex properties of the ATPase activity; Mu B protein oligomerizes in the presence of ATP, and ATP hydrolysis by the Mu B ATPase is stimulated by the protein oligomerization and shows a positive cooperativity with respect to ATP concentration. Mu B ATPase activity is also modulated by DNA and Mu A protein. DNA alone suppresses the catalytic activity of Mu B ATPase, whereas DNA enhances the apparent binding affinity for ATP. In the presence of Mu A protein together with DNA, however, the catalytic activity is greatly stimulated. Based on these results, we propose a working hypothesis in which oligomerization of Mu B protein plays a key role in its ATPase cycle.  相似文献   

17.
ATP-dependent aggregation of single-stranded DNA by a bacterial SMC homodimer.   总被引:15,自引:1,他引:14  
M Hirano  T Hirano 《The EMBO journal》1998,17(23):7139-7148
SMC (structural maintenance of chromosomes) proteins are putative ATPases that are highly conserved among Bacteria, Archaea and Eucarya. Eukaryotic SMC proteins are implicated in a diverse range of chromosome dynamics including chromosome condensation, dosage compensation and recombinational repair. In eukaryotes, two different SMC proteins form a heterodimer, which in turn acts as the core component of a large protein complex. Despite recent progress, no ATP-dependent activity has been found in individual SMC subunits. We report here the first biochemical characterization of a bacterial SMC protein from Bacillus subtilis. Unlike eukaryotic versions, the B.subtilis SMC protein (BsSMC) is a simple homodimer with no associated subunits. It binds preferentially to single-stranded DNA (ssDNA) and has a ssDNA-stimulated ATPase activity. In the presence of ATP, BsSMC forms large nucleoprotein aggregates in a ssDNA-specific manner. Proteolytic cleavage of BsSMC is changed upon binding to ATP and ssDNA. The energy-dependent aggregation of ssDNA might represent a primitive type of chromosome condensation that occurs during segregation of bacterial chromosomes.  相似文献   

18.
Beef heart mitochondrial ATPase (F1) catalyzes the hydrolysis of the ATP analog adenyl-5-yl imidodiphosphate (AMP-PNP). The reaction products are inorganic phosphate and adenyl-5-yl phosphoramidate (AMP-PN) as determined by HPLC analysis. The hydrolysis occurs in both the presence and absence of added divalent metal ions and is stimulated by potassium. The kinetic properties of the hydrolytic reaction depend markedly on the identity of the added divalent metal. GMP-PNP and AMP-CPP are also hydrolyzed, while AMP-PCP is not. Adenyl-5-yl phosphoramidate is a potent effect of beef heart mitochondrial ATPase activity. Based on these data, a reinterpretation of work based on the assumption that AMP-PNP is not hydrolyzed is presented.  相似文献   

19.
C A O'Brian  N E Ward 《Biochemistry》1991,30(9):2549-2554
We recently reported that autophosphorylated rat brain protein kinase C (PKC) catalyzes a Ca2(+)- and phosphatidylserine- (PS-) dependent ATPase reaction. The Ca2(+)- and PS-dependent ATPase and histone kinase reactions of PKC each had a Km app(ATP) of 6 microM. Remarkably, the catalytic fragment of PKC lacked detectable ATPase activity. In this paper, we show that subsaturating concentrations of protein substrates accelerate the ATPase reaction catalyzed by PKC and that protein and peptide substrates of PKC induce ATPase catalysis by the catalytic fragment. At subsaturating concentrations, histone III-S and protamine sulfate each accelerated the ATPase activity of PKC in the presence of Ca2+ and PS by as much as 1.5-fold. At saturating concentrations, the protein substrates were inhibitory. Poly(L-lysine) failed to accelerate the ATPase activity, indicating that the acceleration observed with histone III-S and protamine sulfate was not simply a result of their gross physical properties. Furthermore, histone III-S induced the ATPase activity of the catalytic fragment of PKC, at both subsaturating and saturating histone concentrations. The induction of ATPase activity was also elicited by the peptide substrate Arg-Arg-Lys-Ala-Ser-Gly-Pro-Pro-Val, when the peptide was present at concentrations near its Km app. The induction of the ATPase activity by the nonapeptide provides strong evidence that the binding of phospho acceptor substrates to the active site of PKC can stimulate ATP hydrolysis. Taken together, our results indicate that PKC-catalyzed protein phosphorylation is inefficient, since it is accompanied by Pi production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The first step in the biosynthesis of glutathione is the formation of gamma-glutamyl-cysteine by the enzyme glutamyl-cysteine synthetase. Since this enzyme is not specific for cysteine, different gamma-glutamylamino acids may be formed in vivo which represent potential substrates for the enzymes gamma-glutamylcyclotransferase; in this way 5-oxo-L-proline and free amino acid are formed. We investigated in membrane-free hemolysate the competition between the biosynthesis of glutathione or ophthalmic acid and the degradation of gamma-glutamyl peptides by measuring the formation of 5-oxoproline. The endogenous rate of 5-oxoproline production was 0.13 muM/min. This increased to 2muM/min after addition of 2-aminobutyrate, and to 10muM/min after addition of glutamate and 2-aminobutyrate to hemolysate. Addition of cysteine resulted in an increased oxoproline production only under conditions where glutamyl-cysteine accumulated. In addition, it was shown that for glutamyl-2-aminobutyrate the degradation to 5-oxoproline is faster than the utilization for the tripeptide synthesis. This was not the case for glutamyl-cysteine. Since membrane-free hemolysate (which lacks gamma-glutamyltransferase) is able to produce 5-oxoproline starting from glutamate, it is concluded that this 5-oxoprolinent amino acid transport via a modified gamma-glutamyl cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号