首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the embryonic neocortex, neuronal precursors are generated in the ventricular zone (VZ) and accumulate in the cortical plate. Recently, the subventricular zone (SVZ) of the embryonic neocortex was recognized as an additional neurogenic site for both principal excitatory neurons and GABAergic inhibitory neurons. To gain insight into the neurogenesis of GABAergic neurons in the SVZ, we investigated the characteristics of intermediate progenitors of GABAergic neurons (IPGNs) in mouse neocortex by immunohistochemistry, immunocytochemistry, single-cell RT-PCR and single-cell array analysis. IPGNs were identified by their expression of some neuronal and cell cycle markers. Moreover, we investigated the origins of the neocortical IPGNs by Cre-loxP fate mapping in transgenic mice and the transduction of part of the telencephalic VZ by Cre-reporter plasmids, and found them in the medial and lateral ganglionic eminence. Therefore, they must migrate tangentially within the telencephalon to reach the neocortex. Cell-lineage analysis by simple-retrovirus transduction revealed that the neocortical IPGNs self-renew and give rise to a small number of neocortical GABAergic neurons and to a large number of granule and periglomerular cells in the olfactory bulb. IPGNs are maintained in the neocortex and may act as progenitors for adult neurogenesis.  相似文献   

3.
Different subsets of interneurons in the Wistar rat neocortex and in neocortical transplants developing in a damaged nerve were identified by the following immunohistochemical markers: glutamate decarboxylase (GAD 67) for GABAergic nerve cells, NO-synthase (NOS) for NO-ergic neurons, choline acetyltransferase (ChAT) for cholinergic cells, and tyrosine hydroxylase for catecholaminergic structures. Twentyeight days after surgery, individual GAD 67-ir, NO-ir, ChAT-ir, and very rarely TH-ir cells were detected in the graft. It was shown that the number of GAD 67-ir neurons per unit area in the grafts was less than in the rat neocortex P20.  相似文献   

4.
5.
Abstract: Methylazoxymethanol acetate (MAM), a potent, rapidly eliminated nucleic acid alkylating agent, produces microencephaly in rat pups when injected into their dams on day 15 of gestation. In the adult microencephalic rats, neuronal loss is largely confined to telencephalic structures, such as the superficial neocortical laminae, whose neuroepithelial progenitor cells were undergoing vigorous replication during the chemical exposure. Histological examination of the forebrain 2 days after injection revealed early selective damage to the ventricular geminal zone with relative sparing of cortical plate neurons generated on earlier days. The degree of specificity of MAM's action on neurochemically defined neuronal populations was examined by measuring presynaptic markers for GABAergic, noradrenergic and cholinergic neurons in atrophic lateral cortex from 20 days gestation to adulthood. Although treatment reduced GABAergic markers (GABA, its synthetic enzyme and synaptosomal uptake process) in proportion to loss of cortex mass (-67%), the maturational pattern for remaining GABAergic neurons was virtually normal. Although the maturational sequence of noradrenergic markers was similar to control, the concentration of endogenous norepinephrine, [3H]norepinephrine uptake and tyrosine hydroxylase specific activity were two- to fourfold higher than control at each time. However, total noradrenergic markers per cortex section were nearly identical to control throughout development, indicating that development of the noradrenergic axonal arbor in neocortex was insensitive to loss of neurons in the terminal field. Maturation of cholinergic markers (endogenous acetylcholine, its synthetic enzyme and [3H]choline uptake) in the atrophic cortex was biphasic: concentrations were similar to control values for the first 12 postnatal days, but gradually rose to levels twofold higher than control. These results indicate that neurochemical alterations observed in cortex from prenatally MAM-treated rats are primarily the result of early selective elimination of neuronal subpopulations. Fetal MAM exposure appeared to have minimal effects on biochemical differentiation of neurons remaining intact in the atrophic cortex. MAM appears to be a useful toxin for producing selective loss of neuronal groups based on their time of generation in the fetus.  相似文献   

6.
Transplantation of neural progenitors or stem cells is a most useful tool to investigate the relative contribution of cell-autonomous mechanisms and environmental cues in the regulation of cell specification and differentiation during CNS development. To assess the capability of neocortical progenitor cells to integrate into foreign brain regions, here we examined the fate of precursor cells isolated from the dorsal telencephalon of E12 ß-actin-EGFP transgenic mouse embryos after heterotopic/heterochronic transplantation to the E16 rat brain in utero. Our observations show that donor cells were able to penetrate, survive and produce mature cell types into wide regions of the host CNS. Namely, EGFP-positive cells acquired site-specific neuronal identities in many telencephalic regions, including neocortex, hippocampus, olfactory bulb and corpus striatum. In contrast, incorporation into more caudal sites was much less efficient. A fraction of donor cells formed large aggregates that remained segregated from the host milieu. Such aggregates contained mature neurons and glia, including some EGFP-negative elements of host origin, and developed the complex organization of the mature nervous tissue. On the other hand, transplanted cells that engrafted in the parenchyma of extratelencephalic regions predominantly generated glial types. The few neurons failed to acquire obvious site-specific phenotypic traits and did not integrate into the local host architecture. Altogether, our observations indicate that E12 neocortical progenitors are already committed towards regional identities and are unable to modify their phenotypic choices when exposed to heterotopic environmental conditions along different rostro-caudal domains of the embryonic CNS.  相似文献   

7.
8.
Some mammals and birds independently evolved an enlarged telencephalon. They appear to have done so, at least in part, by developing a thick telencephalic subventricular zone (SVZ). We suggest that this correlation between telencephalic enlargement and SVZ expansion is due to a mechanical constraint acting on the proliferative ventricular zone (VZ). Essentially, we argue that rapid proliferation in the VZ after post-mitotic cells in the overlying mantle zone have begun to form limits the VZ's tangential expandability and forces some proliferating cells to emigrate from the VZ and expand the pool of proliferating cells that comprise the SVZ.  相似文献   

9.
10.
The appearance of the neocortex, its expansion, and its differentiation in mammals, represents one of the principal episodes in the evolution of the vertebrate brain. One of the fundamental questions in neuroscience is what is special about the neocortex of humans and how does it differ from that of other species? It is clear that distinct cortical areas show important differences within both the same and different species, and this has led to some researchers emphasizing the similarities whereas others focus on the differences. In general, despite of the large number of different elements that contribute to neocortical circuits, it is thought that neocortical neurons are organized into multiple, small repeating microcircuits, based around pyramidal cells and their input-output connections. These inputs originate from extrinsic afferent systems, excitatory glutamatergic spiny cells (which include other pyramidal cells and spiny stellate cells), and inhibitory GABAergic interneurons. The problem is that the neuronal elements that make up the basic microcircuit are differentiated into subtypes, some of which are lacking or highly modified in different cortical areas or species. Furthermore, the number of neurons contained in a discrete vertical cylinder of cortical tissue varies across species. Additionally, it has been shown that the neuropil in different cortical areas of the human, rat and mouse has a characteristic layer specific synaptology. These variations most likely reflect functional differences in the specific cortical circuits. The laminar specific similarities between cortical areas and between species, with respect to the percentage, length and density of excitatory and inhibitory synapses, and to the number of synapses per neuron, might be considered as the basic cortical building bricks. In turn, the differences probably indicate the evolutionary adaptation of excitatory and inhibitory circuits to particular functions.  相似文献   

11.
12.
13.
14.
BMP signaling is required locally to pattern the dorsal telencephalic midline   总被引:10,自引:0,他引:10  
Hébert JM  Mishina Y  McConnell SK 《Neuron》2002,35(6):1029-1041
BMPs have been proposed to pattern the medial-lateral axis of the telencephalon in a concentration-dependent manner, thus helping to subdivide the embryonic telencephalon into distinct forebrain regions. Using a CRE/loxP genetic approach, we tested this hypothesis by disrupting the Bmpr1a gene in the telencephalon. In mutants, BMP signaling was compromised throughout the dorsal telencephalon, but only the most dorsalmedial derivative, the choroid plexus, failed to be specified or differentiate. Choroid plexus precursors remained proliferative and did not adopt the fate of their lateral telencephalic neighbors. These results demonstrate that BMP signaling is required for the formation of the most dorsal telencephalic derivative, the choroid plexus, and that BMP signaling plays an essential role in locally patterning the dorsal midline. Our data fail to support a more global, concentration-dependent role in specifying telencephalic cell fates.  相似文献   

15.
16.
Biallelic mutations in DONSON, an essential gene encoding for a replication fork protection factor, were linked to skeletal abnormalities and microcephaly. To better understand DONSON function in corticogenesis, we characterized Donson expression and consequences of conditional Donson deletion in the mouse telencephalon. Donson was widely expressed in the proliferation and differentiation zones of the embryonic dorsal and ventral telencephalon, which was followed by a postnatal expression decrease. Emx1-Cre-mediated Donson deletion in progenitors of cortical glutamatergic neurons caused extensive apoptosis in the early dorsomedial neuroepithelium, thus preventing formation of the neocortex and hippocampus. At the place of the missing lateral neocortex, these mutants exhibited a dorsal extension of an early-generated paleocortex. Targeting cortical neurons at the intermediate progenitor stage using Tbr2-Cre evoked no apparent malformations, whereas Nkx2.1-Cre-mediated Donson deletion in subpallial progenitors ablated 75% of Nkx2.1-derived cortical GABAergic neurons. Thus, the early telencephalic neuroepithelium depends critically on Donson function. Our findings help explain why the neocortex is most severely affected in individuals with DONSON mutations and suggest that DONSON-dependent microcephaly might be associated with so far unrecognized defects in cortical GABAergic neurons. Targeting Donson using an appropriate recombinase is proposed as a feasible strategy to ablate proliferating and nascent cells in experimental research.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号