首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The cabbage looper, Trichoplusia ni, is one of only two insect species that have evolved resistance to Bacillus thuringiensis in agricultural situations. The trait of resistance to B. thuringiensis toxin Cry1Ac from a greenhouse-evolved resistant population of T. ni was introgressed into a highly inbred susceptible laboratory strain. The resulting introgression strain, GLEN-Cry1Ac-BCS, and its nearly isogenic susceptible strain were subjected to comparative genetic and biochemical studies to determine the mechanism of resistance. Results showed that midgut proteases, hemolymph melanization activity, and midgut esterase were not altered in the GLEN-Cry1Ac-BCS strain. The pattern of cross-resistance of the GLEN-Cry1Ac-BCS strain to 11 B. thuringiensis Cry toxins showed a correlation of the resistance with the Cry1Ab/Cry1Ac binding site in T. ni. This cross-resistance pattern is different from that found in a previously reported laboratory-selected Cry1Ab-resistant T. ni strain, evidently indicating that the greenhouse-evolved resistance involves a mechanism different from the laboratory-selected resistance. Determination of specific binding of B. thuringiensis toxins Cry1Ab and Cry1Ac to the midgut brush border membranes confirmed the loss of midgut binding to Cry1Ab and Cry1Ac in the resistant larvae. The loss of midgut binding to Cry1Ab/Cry1Ac is inherited as a recessive trait, which is consistent with the recessive inheritance of Cry1Ab/Cry1Ac resistance in this greenhouse-derived T. ni population. Therefore, it is concluded that the mechanism for the greenhouse-evolved Cry1Ac resistance in T. ni is an alteration affecting the binding of Cry1Ab and Cry1Ac to the Cry1Ab/Cry1Ac binding site in the midgut.  相似文献   

2.
The cabbage looper, Trichoplusia ni, is one of only two insect species that have evolved resistance to Bacillus thuringiensis in agricultural situations. The trait of resistance to B. thuringiensis toxin Cry1Ac from a greenhouse-evolved resistant population of T. ni was introgressed into a highly inbred susceptible laboratory strain. The resulting introgression strain, GLEN-Cry1Ac-BCS, and its nearly isogenic susceptible strain were subjected to comparative genetic and biochemical studies to determine the mechanism of resistance. Results showed that midgut proteases, hemolymph melanization activity, and midgut esterase were not altered in the GLEN-Cry1Ac-BCS strain. The pattern of cross-resistance of the GLEN-Cry1Ac-BCS strain to 11 B. thuringiensis Cry toxins showed a correlation of the resistance with the Cry1Ab/Cry1Ac binding site in T. ni. This cross-resistance pattern is different from that found in a previously reported laboratory-selected Cry1Ab-resistant T. ni strain, evidently indicating that the greenhouse-evolved resistance involves a mechanism different from the laboratory-selected resistance. Determination of specific binding of B. thuringiensis toxins Cry1Ab and Cry1Ac to the midgut brush border membranes confirmed the loss of midgut binding to Cry1Ab and Cry1Ac in the resistant larvae. The loss of midgut binding to Cry1Ab/Cry1Ac is inherited as a recessive trait, which is consistent with the recessive inheritance of Cry1Ab/Cry1Ac resistance in this greenhouse-derived T. ni population. Therefore, it is concluded that the mechanism for the greenhouse-evolved Cry1Ac resistance in T. ni is an alteration affecting the binding of Cry1Ab and Cry1Ac to the Cry1Ab/Cry1Ac binding site in the midgut.  相似文献   

3.
The changes of inheritance mode and fitness of resistance in Helicoverpa armigera (Hübner) along with its resistance evolution to Cry1Ac toxin were evaluated in the laboratory. The resistance levels reached 170.0-, 209.6- and 2893.3-fold, on selection of the field population in the 16th (BtR-F(16)), 34th (BtR-F(34)) and 87th (BtR-F(87)) generation with artificial diet containing Cry1Ac toxin, respectively. As the resistance levels increased, more larvae feeding on the Bt cotton expressing Cry1Ac toxin survived. Most larvae of BtR-F(87) could develop to the 5th instar and about 3% individuals reached the adult stage. The inheritance of Cry1Ac resistance trait at three resistant levels was autosomal and incompletely recessive, but the degree of dominance decreased as the resistance increased. The resistance was primarily monogenic in BtR-F(16) strain, but polygenic as resistance increased. The relative fitness of H. armigera, measured as a ratio of R(0) (the net replacement rate) of resistant strain divided by R(0) of the susceptible strain, decreased with an increase of the resistance levels, with ratios of 0.79, 0.64 and 0.59 in their respective BtR-F(16), BtR-F(34) and BtR-F(87) strains.  相似文献   

4.
Dipel-resistant and -susceptible strains of Ostrinia nubilalis (Hübner) were evaluated for larval mortality and growth inhibition when fed diets containing individual Bacillus thuringiensis protoxins. Resistance ratios for four of the protoxins in Dipel (Cry1Aa, Cry1Ab, Cry1Ac, and Cry2Aa) were 170-, 205-, 524-, and > 640-fold, respectively, considerably higher than the 47-fold resistance to Dipel. The Dipel-resistant strain was 36-fold resistant to Cry1Ba, a protoxin not present in Dipel. Another non-Dipel protoxin, Cry1Ca, did not cause significant mortality for either resistant or susceptible larvae with doses as high as 1.0 mg/ml. In an evaluation of larval growth inhibition, resistance to Cry1Aa, Cry1Ab, Cry1Ac, and Cry1Ba was significant at concentrations of 0.054 and 0.162 microg/ml. However, growth inhibition with Cry2Aa was not significant at either dose. These data provide information on the spectrum of resistance and cross-resistance to individual Cry protoxins in this strain.  相似文献   

5.
Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca. 20% survival on BollGard II foliage. BollGard II-resistant T. ni strains were established by selection with BollGard II foliage to further remove Cry2Ab-sensitive alleles in the T. ni populations. The BollGard II-resistant strains showed incomplete resistance to BollGard II, with adjusted survival values of 0.50 to 0.78 after 7 days. The resistance to the dual-toxin cotton plants was conferred by two genetically independent resistance mechanisms: one to Cry1Ac and one to Cry2Ab. The 50% lethal concentration of Cry2Ab for the resistant strain was at least 1,467-fold that for the susceptible T. ni strain. The resistance to Cry2Ab in resistant T. ni was an autosomally inherited, incompletely recessive monogenic trait. Results from this study indicate that insect populations under selection by Bt sprays in agriculture can be resistant to multiple Bt toxins and may potentially confer resistance to multitoxin Bt crops.  相似文献   

6.
7.
Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae.  相似文献   

8.
The performance of Helicoverpa armigera (Hübner) on 15-wk-old cotton plants was compared for a susceptible strain, a near-isogenic laboratory-selected strain, and F1 progeny of the two strains. Glasshouse experiments were conducted to test the three insect types on conventional plants and transgenic plants that produced the Bacillus thuringiensis (Bt) toxin Cry1Ac. At the time of testing (15 wk), the Cry1Ac concentration in cotton leaves was 75% lower than at 4 wk. On these plants, < 10% of susceptible larvae reached the fifth instar, and none survived to pupation. In contrast, survival to adulthood on Cry1Ac cotton was 62% for resistant larvae and 39% for F1 larvae. These results show that inheritance of resistance to 15-wk-old Cry1Ac cotton is partially dominant, in contrast to results previously obtained on 4-wk-old Cry1Ac cotton. Growth and survival of resistant insects were similar on Cry1Ac cotton and on non-Bt cotton, but F1 insects developed more slowly on Cry1Ac cotton than on non-Bt cotton. Survival was lower and development was slower for resistant larvae than for susceptible and F1 larvae on non-Bt cotton. These results show recessive fitness costs are associated with resistance to Cry1Ac.  相似文献   

9.
Two strains of the diamondback moth, Plutella xylostella (L.), were selected using Cry1C protoxin and transgenic broccoli plants expressing a Cry1C toxin of Bacillus thuringiensis (Bt). Both strains were resistant to Cry1C but had different cross-resistance patterns. We used 12 Bt protoxins for cross-resistance tests, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Bb, Cry1C, Cry1D, Cry1E, Cry1F, Cry1J, Cry2Ab, Cry9Aa, and Cry9C. Compared with the unselected sister strain (BCS), the resistance ratio (BR) of one strain (BCS-Cry1C-1) to the Cry1C protoxin was 1,090-fold with high level of cross-resistance to Cry1Aa, Cry1Ab, Cry1Ac, Cry1F, and Cry1J (RR > 390-fold). The cross-resistance to Cry1A, Cry1F, and Cry1J in this strain was probably related to the Cry1A resistance gene(s) that came from the initial field population and was caused by intensive sprayings of Bt products containing Cry1A protoxins. The neonates of this strain can survive on transgenic broccoli plants expressing either Cry1Ac or Cry1C toxins. The other strain (BCS-Cry1C-2) was highly resistant to Cry1C but not cross-resistant to other Bt protoxins. The neonates of this strain can survive on transgenic broccoli expressing Cry1C toxin but not Cry1Ac toxin. The gene(s) conferring resistance to Cry1C segregates independently from Cry1Ac resistance in these strains. The toxicity of Cry1E and Cry2Ab protoxins was low to all of the three strains. The overall progress of all work has resulted in a unique model system to test the stacked genes strategy for resistance management of Bt transgenic crops.  相似文献   

10.
Laboratory selection with Cry1Ac, the Bacillus thuringiensis (Bt) toxin in transgenic cotton, initially produced 300-fold resistance in a field-derived strain of pink bollworm, Pectinophora gossypiella (Saunders), a major cotton pest. After additional selection increased resistance to 3,100-fold, we tested the offspring of various crosses to determine the mode of inheritance of resistance to Cry1Ac. The progeny of reciprocal F1 crosses (resistant male x susceptible female and vice versa) responded alike in bioassays, indicating autosomal inheritance. Consistent with earlier findings, resistance was recessive at a high concentration of Cry1Ac. However, the dominance of resistance increased as the concentration of Cry1Ac decreased. Analysis of survival and growth of progeny from backcrosses (F1 x resistant strain) suggest that resistance was controlled primarily by one or a few major loci. The progression of resistance from 300- to 3,100-fold rules out the simplest model with one locus and two alleles. Overall the patterns observed can be explained by either a single resistance gene with three or more alleles or by more than one resistance gene. The pink bollworm resistance to Cry1Ac described here fits "mode 1" resistance, the most common type of resistance to Cry1A toxins in Lepidoptera.  相似文献   

11.
The resistance to the Bacillus thuringiensis (Bt) toxin Cry2Ab in a greenhouse-originated Trichoplusia ni strain resistant to both Bt toxins Cry1Ac and Cry2Ab was characterized. Biological assays determined that the Cry2Ab resistance in the T. ni strain was a monogenic recessive trait independent of Cry1Ac resistance, and there existed no significant cross-resistance between Cry1Ac and Cry2Ab in T. ni. From the dual-toxin-resistant T. ni strain, a strain resistant to Cry2Ab only was isolated, and the Cry2Ab resistance trait was introgressed into a susceptible laboratory strain to facilitate comparative analysis of the Cry2Ab resistance with the susceptible T. ni strain. Results from biochemical analysis showed no significant difference between the Cry2Ab-resistant and -susceptible T. ni larvae in midgut proteases, including caseinolytic proteolytic activity and zymogram profile and serine protease activities, in midgut aminopeptidase and alkaline phosphatase activity, and in midgut esterases and hemolymph plasma melanization activity. For analysis of genetic linkage of Cry2Ab resistance with potential Cry toxin receptor genes, molecular markers for the midgut cadherin, alkaline phosphatase (ALP), and aminopeptidase N (APN) genes were identified between the original greenhouse-derived dual-toxin-resistant and the susceptible laboratory T. ni strains. Genetic linkage analysis showed that the Cry2Ab resistance in T. ni was not genetically associated with the midgut genes coding for the cadherin, ALP, and 6 APNs (APN1 to APN6) nor associated with the ABC transporter gene ABCC2. Therefore, the Cry2Ab resistance in T. ni is conferred by a novel but unknown genetic mechanism.  相似文献   

12.
A synthetic laboratory population of the diamondback moth, Plutella xylostella (L.), was used to test the F2 screen developed for detecting the frequency of rare resistance alleles to Cry1Ac and Cry1C toxins of Bacillus thuringiensis (Bt). Of the 120 single-pair matings set up, 106 produced enough F2 families for screening of Cry1Ac or Cry1C resistance alleles using both transgenic broccoli and an artificial diet overlay assay with a diagnostic dose. When using Bt broccoli plants as the F2 screen method, only one F2 family was detected for Cry1Ac resistance and no family was detected for Cry1C resistance. Six families were detected for either Cry1Ac or Cry1C resistance using the diet assay. The survivors in the diagnostic diet assay were crossed with the resistant individuals to confirm their resistance genotypes. Four F2 families were confirmed to contain one copy of an allele resistant to Cry1Ac in the original single-pairs and four other F2 families contained an allele resistant to Cry1C. Our results suggest that using transgenic plants expressing a high level of a Bt toxin in an F2 screen may underestimate the frequency of resistance alleles with high false negatives, or fail to detect true resistance alleles. The diagnostic diet assay was a better F2 screen method to detect alleles, especially for the Cry1Ac resistance with monogenic inheritance in the diamondback moth. The estimated probabilities of false positives and false negatives were 33 and 1%, respectively, for detecting Cry1Ac resistance at the allele frequency of 0.012 using the diagnostic diet assay. Careful validation of the screening method for each insect-crop system is necessary before the F2 screen can be used to detect rare Bt resistance alleles in field populations.  相似文献   

13.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.  相似文献   

14.
Genetically engineered cotton and corn plants producing insecticidal Bacillus thuringiensis (Bt) toxins kill some key insect pests. Yet, evolution of resistance by pests threatens long-term insect control by these transgenic Bt crops. We compared the genetic basis of resistance to Bt toxin Cry1Ac in two independently derived, laboratory-selected strains of a major cotton pest, the pink bollworm (Pectinophora gossypiella [Saunders]). The Arizona pooled resistant strain (AZP-R) was started with pink bollworm from 10 field populations and selected with Cry1Ac in diet. The Bt4R resistant strain was started with a long-term susceptible laboratory strain and selected first with Bt cotton bolls and later with Cry1Ac in diet. Previous work showed that AZP-R had three recessive mutations (r1, r2, and r3) in the pink bollworm cadherin gene (PgCad1) linked with resistance to Cry1Ac and Bt cotton producing Cry1Ac. Here we report that inheritance of resistance to a diagnostic concentration of Cry1Ac was recessive in Bt4R. In interstrain complementation tests for allelism, F(1) progeny from crosses between AZP-R and Bt4R were resistant to Cry1Ac, indicating a shared resistance locus in the two strains. Molecular analysis of the Bt4R cadherin gene identified a novel 15-bp deletion (r4) predicted to cause the loss of five amino acids upstream of the Cry1Ac-binding region of the cadherin protein. Four recessive mutations in PgCad1 are now implicated in resistance in five different strains, showing that mutations in cadherin are the primary mechanism of resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona.  相似文献   

15.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.  相似文献   

16.
The binding properties of Bacillus thuringiensis toxins to brush border membrane vesicles of Dipel-resistant and -susceptible Ostrinia nubilalis larvae were compared using ligand-toxin immunoblot analysis, surface plasmon resonance (SPR), and radiolabeled toxin binding assays. In ligand-toxin immunoblot analysis, the number of Cry1Ab or Cry1Ac toxin binding proteins and the relative toxin binding intensity were similar in vesicles from resistant and susceptible larvae. Surface plasmon resonance with immobilized activated Cry1Ab toxin indicated that there were no significant differences in binding with fluid-phase vesicles from resistant and susceptible larvae. Homologous competition assays with radiolabeled Cry1Ab and Cry1Ac toxin and vesicles from resistant and susceptible larvae resulted in similar toxin dissociation constants and binding site concentrations. Heterologous competition binding assays indicated that Cry1Ab and Cry1Ac completely competed for binding, thus they share binding sites in the epithelium of the larval midguts of O. nubilalis. Overall, the binding analyses indicate that resistance to Cry1Ab and Cry1Ac in this Bt-resistant strain of O. nubilalis is not associated with a loss of toxin binding.  相似文献   

17.
贺明霞  何康来  王振营  王新颖  李庆 《昆虫学报》2013,56(10):1135-1142
亚洲玉米螟Ostrinia furnacalis (Guenée) 是危害玉米的重要害虫之一, 转Bt基因抗虫玉米为其防治提供了新的途径。然而, 靶标害虫产生抗性将严重阻碍Bt制剂及转Bt基因抗虫玉米的持续应用。明确害虫对转Bt基因玉米表达的毒素蛋白的抗性演化, 对于制定科学有效的抗性治理策略具有重要的理论和实际意义。本实验通过人工饲料汰选法研究了Bt Cry1Ie毒素胁迫下亚洲玉米螟的抗性发展及汰选14代的种群对其他Bt毒素(Cry1Ab, Cry1Ac和Cry1Fa)的交互抗性, 并观察了Cry1Ie蛋白胁迫对亚洲玉米螟生物学的影响。结果表明: 随着汰选压不断提高, 亚洲玉米螟种群对Cry1Ie毒素的敏感性逐渐下降。汰选14代后, 种群对Cry1Ie毒素的抗性水平提高了23倍。然而, Cry1Ab, Cry1Ac和Cry1Fa对所获Cry1Ie汰选种群的毒力与对敏感种群的毒力相比没有显著差异, 说明Cry1Ie汰选没有引起亚洲玉米螟对Cry1Ab, Cry1Ac和Cry1Fa毒素产生交互抗性。同时, 与敏感种群相比, Cry1Ie汰选14代的种群幼虫平均发育历期延长5.7 d, 蛹重减轻13.7%, 单雌产卵量下降40.0%。本研究结果说明, 大面积单一种植转cry1Ie基因抗虫玉米, 可能引起亚洲玉米螟产生抗性; 亚洲玉米螟Cry1Ie抗性种群对Cry1Ab, Cry1Ac和Cry1Fa没有交互抗性, 含有cry1Ie和cry1Ab, cry1Ac或cry1F双/多基因抗虫玉米, 可作为靶标害虫抗性治理的重要策略。  相似文献   

18.
Evolution of resistance in pests threatens the long-term efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays and transgenic crops. Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and Cry1Ac in some pests, including pink bollworm (Pectinophora gossypiella). Here we report that Cry1AbMod and Cry1AcMod were also effective against a laboratory-selected strain of pink bollworm resistant to Cry2Ab as well as to Cry1Ab and Cry1Ac. Resistance ratios based on the concentration of toxin killing 50% of larvae for the resistant strain relative to a susceptible strain were 210 for Cry2Ab, 270 for Cry1Ab, and 310 for Cry1Ac, but only 1.6 for Cry1AbMod and 2.1 for Cry1AcMod. To evaluate the interactions among toxins, we tested combinations of Cry1AbMod, Cry1Ac, and Cry2Ab. For both the resistant and susceptible strains, the net results across all concentrations tested showed slight but significant synergism between Cry1AbMod and Cry2Ab, whereas the other combinations of toxins did not show consistent synergism or antagonism. The results suggest that the modified toxins might be useful for controlling populations of pink bollworm resistant to Cry1Ac, Cry2Ab, or both.  相似文献   

19.
The use of genetically modified crops expressing Bacillus thuringiensis (Bt) toxins can lead to the reduction in application of broad-spectrum pesticides and an increased opportunity for supplementary biological control. Bt microbial sprays are also used by organic growers or as part of integrated pest management programs that rely on the use of natural enemies. In both applications the evolution of resistance to Bt toxins is a potential problem. Natural enemies (pathogens or insects) acting in combination with toxins can accelerate or decelerate the evolution of resistance to Bt. In the present study we investigated whether the use of a nucleopolyhedrovirus (AcMNPV) could potentially affect the evolution of resistance to the Bt toxin Cry1Ac in Plutella xylostella. At low toxin doses there was evidence for antagonistic interactions between AcMNPV and Cry1Ac resistant and susceptible insects. However, this antagonism was much stronger and more widespread for susceptible larvae; interactions were generally not distinguishable from additive for resistant larvae. Selection for resistance to Cry1Ac in two populations of P. xylostella with differing resistance mechanisms did not produce any correlated changes in resistance to AcMNPV. Stronger antagonistic interactions between Bt and AcMNPV on susceptible rather than resistant larvae can decrease the relative fitness between Bt-resistant and susceptible larvae. These interactions and the lack of cross-resistance between virus and toxin suggest that the use of NPV is compatible with resistance management to Bt products.  相似文献   

20.
Bacillus thuringiensis (Bt)-resistant light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), created by selection of a laboratory colony with artificial diets containing the Bt endotoxin Cry1Ac, were used to explore relationships between larval behavior and resistance to toxins. Our hypothesis was that behavioral responses during the first days of exposure to diet are directly related to the toxicity of the diet, as measured by subsequent mortality. We tested two predictions from this hypothesis. The first prediction was that susceptible larvae and resistant larvae exhibit similar behavior on diet without toxins, settling at feeding sites within a few hours. The second prediction was that susceptible and resistant larvae differ in their behavior on Cry1Ac diet to the same degree that their mortality differs, i.e., on Cry1Ac diet, resistant larvae exhibit anorexia and walking to a lesser degree than susceptible larvae. Predictions were tested by making observations over 2 wk, with each larva held individually in a 10-cm-long cylindrical glass arena with two aliquots of diet. The two aliquots consisted of either the same diet (two no-choice treatments: control/control or Cry 1Ac/Cry1Ac) or different diets (one choice treatment: control/Cry 1Ac). The two predictions did not accurately describe larval behavior. On control diet, behavior differed, with resistant larvae settling more quickly than susceptible larvae. On Cry1Ac diet, behavior was more similar than expected. Thus, even though the Bt diet was much less toxic to resistant larvae, resistant larvae seemed to match the ability of susceptible larvae to reduce exposure to Bt diet while increasing exposure to nontoxic control diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号