首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible phosphorylation of chl a/b protein complex II (LHCII), the mobile light-harvesting antenna, regulates its association and energy transfer/dissipation to photosystem (PS) II or I (state transition). Excitation of LHCII induces conformational changes affecting the exposure of the phosphorylation site at the N-terminal domain to protein kinase(s) [Zer, H., et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8277-8282; Zer, H., et al. (2003) Biochemistry 42, 728-738]. Thus, it was of interest to examine whether the pigment composition of LHCII affects the light-induced modulation of LHCII phosphorylation and state transition. To this end, we have used thylakoids of wild-type Chlamydomonas reinhardtii and xanthophyll deficient mutants npq1, lor1, npq2, npq1 lor1, and npq2 lor1. Phosphorylated protein bands P11, P13, and P17 are considered components of the mobile C. reinhardtii LHCII complex. The protein composition of these bands has been analyzed by mass spectrometry using Qtof-2 with a nanospray attachment. P11 and P13 contain C. reinhardtii light-harvesting chlorophyll a/b binding protein LhcII type I. P17 contains C. reinhardtii LhcII types III and IV. Illumination of isolated thylakoids inhibits the redox-controlled phosphorylation of polypeptide bands P13 and P17 and to a lower extent that of P11. The light-induced inhibition of LHCII phosphorylation and the state transition process are not influenced by extensive differences in the xanthophyll composition of the mutants. Thus, LHCII can be visualized as possessing two functionally distinct, independent domains: (i) the pigment binding transmembrane domain regulating the extent of energy transfer/dissipation and (ii) the surface-exposed phosphorylation site regulating the association of LHCII with PSII or PSI.  相似文献   

2.
Lohr M  Im CS  Grossman AR 《Plant physiology》2005,138(1):490-515
The unicellular green alga Chlamydomonas reinhardtii is a particularly important model organism for the study of photosynthesis since this alga can grow heterotrophically, and mutants in photosynthesis are therefore conditional rather than lethal. The recently developed tools for genomic analyses of this organism have allowed us to identify most of the genes required for chlorophyll and carotenoid biosynthesis and to examine their phylogenetic relationships with homologous genes from vascular plants, other algae, and cyanobacteria. Comparative genome analyses revealed some intriguing features associated with pigment biosynthesis in C. reinhardtii; in some cases, there are additional conserved domains in the algal and plant but not the cyanobacterial proteins that may directly influence their activity, assembly, or regulation. For some steps in the chlorophyll biosynthetic pathway, we found multiple gene copies encoding putative isozymes. Phylogenetic studies, theoretical evaluation of gene expression through analysis of expressed sequence tag data and codon bias of each gene, enabled us to generate hypotheses concerning the function and regulation of the individual genes, and to propose targets for future research. We have also used quantitative polymerase chain reaction to examine the effect of low fluence light on the level of mRNA accumulation encoding key proteins of the biosynthetic pathways and examined differential expression of those genes encoding isozymes that function in the pathways. This work is directing us toward the exploration of the role of specific photoreceptors in the biosynthesis of pigments and the coordination of pigment biosynthesis with the synthesis of proteins of the photosynthetic apparatus.  相似文献   

3.
The eyespot of the biflagellate unicellular green alga Chlamydomonas reinhardtii is a complex organelle that facilitates directional responses of the cell to environmental light stimuli. The eyespot, which assembles de novo after every cell division and is associated with the daughter four-membered (D4) microtubule rootlet, comprises an elliptical patch of rhodopsin photoreceptors on the plasma membrane and stacks of carotenoid-rich pigment granule arrays in the chloroplast. Two loci, EYE2 and EYE3, define factors involved in the formation and organization of the eyespot pigment granule arrays. Whereas EYE3, a serine/threonine kinase of the ABC1 family, localizes to pigment granules, EYE2 localization corresponds to an area of the chloroplast envelope in the eyespot. EYE2 is positioned along, and adjacent to, the D4 rootlet in the absence of pigment granules. The eyespot pigment granule array is required for maintenance of the elliptical shape of both the overlying EYE2 and channelrhodopsin-1 photoreceptor patches. We propose a model of eyespot assembly wherein rootlet and photoreceptor direct EYE2 to an area of the chloroplast envelope, where it acts to facilitate assembly of pigment granule arrays, and EYE3 plays a role in the biogenesis of the pigment granules.  相似文献   

4.
Synthesis of the chlorophyll and the major carotenoid pigments and their assembly into thylakoid membrane have been studied throughout the 12-h light/12-h dark vegetative cell cycle of synchronous Chlamydomonas reinhardtii 137+ (wild-type). Pulse exposure of cells to radioactive acetate under conditions in which labeling accurately reflects lipogenesis, followed by cellular fractionation to purify thylakoid membrane, allowed direct analysis of the pigment synthesis and assembly attendant to thylakoid biogenesis. All pigments are synthesized and assembled into thylakoids continuously, but differentially, with respect to cell-cycle time. Highest synthesis and assembly rates are confined to the photoperiod (mid-to-late G1) and support chlorophyll and carotenoid accretion before M-phase. The lower levels at which these processes take place during the dark period (S, M, and early-to- mid G1) have been ascribed to pigment turnover. Within this general periodic pattern, pigment synthesis and assembly occur in a "multi- step" manner, i.e., by a temporally-ordered, stepwise integration of the various pigments into the thylakoid membrane matrix. The cell-cycle kinetics of pigment assembly at the subcellular level mirror the kinetics of pigment synthesis at the cellular level, indicating that pigment synthesis not only provides chlorophyll and carotenoid for thylakoid biogenesis but may also serve as a critical rate-determinant to pigment assembly.  相似文献   

5.
A pigment accumulating in a Mendelian mutant (y-y) of Chlamydomonas reinhardtii, which has essentially no chlorophyll and lacks inner chloroplast membranes in the light and dark, was isolated and characterized. It was identified as protoporphyrin-IX (PROTO) by spectral analysis using two different methods of extraction and fractionation. The amount of PROTO was estimated to be 10(7) molecules per cell. Since PROTO was the only intermediate of chlorophyll biosynthesis that accumulated, we conclude the y-y lesion in the pathway is after PROTO.  相似文献   

6.
Phosphatidylethanolamine, but not phosphatidylcholine, is found in Chlamydomonas reinhardtii. A cDNA coding for diacylglycerol: CDP-ethanolamine ethanolaminephosphotransferase (EPT) was cloned from C. reinhardtii. The C. reinhardtii EPT appears phylogenetically more similar to mammalian aminoalcoholphosphotransferases than to those of yeast and the least close to those of plants. Similar membrane topography was found between the C. reinhardtii EPT and the aminoalcoholphosphotransferases from mammals, yeast, and plants. A yeast mutant deficient in both cholinephosphotransferase and ethanolaminephosphotransferase was complemented by the C. reinhardtii EPT gene. Enzymatic assays of C. reinhardtii EPT from the complemented yeast microsomes demonstrated that the C. reinhardtii EPT synthesized both PC and PE in the transformed yeast. The addition of either unlabeled CDP-ethanolamine or CDP-choline to reactions reduced incorporation of radiolabeled CDP-choline and radiolabeled CDP-ethanolamine into phosphatidylcholine and phosphatidylethanolamine. EPT activity from the transformed yeast or C. reinhardtii cells was inhibited nearly identically by unlabeled CDP-choline, CDP-ethanolamine, and CMP when [14C]CDP-choline was used as the primary substrate, but differentially by unlabeled CDP-choline and CDP-ethanolamine when [14C]CDP-ethanolamine was the primary substrate. The Km value of the enzyme for CDP-choline was smaller than that for CDP-ethanolamine. This provides evidence that C. reinhardtii EPT, similar to plant aminoalcoholphosphotransferase, is capable of catalyzing the final step of phosphatidylcholine biosynthesis, as well as that of phosphatidylethanolamine in the Kennedy pathway.  相似文献   

7.
Reporter genes have been successfully used in chloroplasts of higher plants, and high levels of recombinant protein expression have been reported. Reporter genes have also been used in the chloroplast of Chlamydomonas reinhardtii, but in most cases the amounts of protein produced appeared to be very low. We hypothesized that the inability to achieve high levels of recombinant protein expression in the C. reinhardtii chloroplast was due to the codon bias seen in the C. reinhardtii chloroplast genome. To test this hypothesis, we synthesized a gene encoding green fluorescent protein (GFP) de novo, optimizing its codon usage to reflect that of major C. reinhardtii chloroplast-encoded proteins. We monitored the accumulation of GFP in C. reinhardtii chloroplasts transformed with the codon-optimized GFP cassette (GFPct), under the control of the C. reinhardtii rbcL 5'- and 3'-UTRs. We compared this expression with the accumulation of GFP in C. reinhardtii transformed with a non-optimized GFP cassette (GFPncb), also under the control of the rbcL 5'- and 3'-UTRs. We demonstrate that C. reinhardtii chloroplasts transformed with the GFPct cassette accumulate approximately 80-fold more GFP than GFPncb-transformed strains. We further demonstrate that expression from the GFPct cassette, under control of the rbcL 5'- and 3'-UTRs, is sufficiently robust to report differences in protein synthesis based on subtle changes in environmental conditions, showing the utility of the GFPct gene as a reporter of C. reinhardtii chloroplast gene expression.  相似文献   

8.
Cryopreservation provides a convenient method for long term storage of living organisms. Current protocols allow the successful cryopreservation of a wide range of algae, although many strains remain recalcitrant to cryopreservation. Chlamydomonas reinhardtii , a species utilized in many molecular and biochemical studies, survives cryopreservation best at low cell density. We show that reduced viability at higher cell densities is caused by the accumulation of a substance released from C. reinhardtii into the culture medium during cryopreservation. A mutant strain of C. reinhardtii (cw10) with a greatly reduced cell wall did not release a substance inhibitory to wild type or cw10 C. reinhardtii during cryopreservation, and could be cryopreserved with the same viability regardless of cell density. The inhibitory substance is small (mw<1300), polar, heat-stable and organic. Chlamydomonas moewusii Gerloff and Chlamydomonas zebra Korschikov ex Pascher both produce substances that reduce the viability of cryopreserved C. reinhardtii . However, neither is affected by the inhibitory substance produced by themselves or C. rienhardtii. Pandorina morum (Müller) Bory and Volvox carteri f. nagariensis Iyengar are colonial Volvocalean algae related to C. reinhardtii that cannot be successfully cryopreserved. They both generate substances that inhibit C. reinhardtii during cryopreservation. The identification of the substance inhibitory to C. reinhardtii during cryopreservation should explain why this alga cryopreserves best at a low cell density, and may lead to protocols that facilitate the more successful cryopreservation of C. reinhardtii and related algae.  相似文献   

9.
Incubation of degreened Chlamydomonas reinhardtii y-1 cells in the dark with m-phenanthroline induced de novo synthesis of a chlorophyllide b-like pigment. The rate of synthesis of this pigment in the dark was greater than that of total chlorophyll in illuminated cells. Most of the newly synthesized pigment was excreted into the culture medium. The product was extracted from the medium as the metal-free pheophorbide, which had a fluorescence excitation maximum at 428 +/- 1 nm and an emission maximum at 657 +/- 1 nm (E428F657) in ethyl acetate (E427F657 in diethyl ether). Three pheophorbide species were extracted from the medium of green cells treated in the dark, a minor component with a spectrum (E410F670) identical to demetallated chlorophyll a, and two major species with spectral values of E428F657 and E433F657. The latter, predominant form had a spectrum identical to demetallated chlorophyll b, which was purified from the algal cells. E428F657 and E433F657 reacted with hydroxylamine and Girard's T-reagent, which caused a shift in the fluorescence emission maximum to 668 nm. Pheophytin b, which contains an aldehyde group, exhibited an identical spectral shift when treated in the same way, but pheophytin a or porphyrin biosynthetic intermediates did not. Proton NMR analysis of the E428F657 chlorin produced by yellow cells treated with m-phenanthroline confirmed the presence of an aldehydic proton. Chelating and nonchelating phenanthroline analogs equally stimulated synthesis of this product.  相似文献   

10.
Husic HD  Marcus CA 《Plant physiology》1994,105(1):133-139
A carbonic anhydrase (CA)-directed photoaffinity reagent, 125I-labeled p-aminomethylbenzenesulfonamide-4-azidosalicylamide,was synthesized and shown to derivatize periplasmic CA in the unicellular green alga Chlamydomonas reinhardtii. The photoderivatization of purified C. reinhardtii periplasmic CA or intact C. reinhardtii cells with the reagent resulted in the modification of the large (37 kD) subunit of the enzyme. Photoderivatization of proteins in lysed C. reinhardtii cells also resulted in the specific labeling of a polypeptide of 30 kD. Centrifugation of the cell extract prior to photoaffinity labeling revealed that the labeled peptide was present predominantly in a particulate fraction. The photoaffinity-labeled 30-kD polypeptide was not observed in extracts from a mutant of C. reinhardtii that is believed to be deficient in an intracellular form of CA. These results provide evidence that the 30-kD polypeptide, which is photoaffinity labeled in lysed C. reinhardtii cells, is an intracellular form of CA.  相似文献   

11.
We measured picosecond time-resolved fluorescence of intact Photosystem I complexes from Chlamydomonas reinhardtii and Arabidopsis thaliana. The antenna system of C. reinhardtii contains about 30-60 chlorophylls more than that of A. thaliana, but lacks the so-called red chlorophylls, chlorophylls that absorb at longer wavelength than the primary electron donor. In C. reinhardtii, the main lifetimes of excitation trapping are about 27 and 68 ps. The overall lifetime of C. reinhardtii is considerably shorter than in A. thaliana. We conclude that the amount and energies of the red chlorophylls have a larger effect on excitation trapping time in Photosystem I than the antenna size.  相似文献   

12.
Chang M  Li F  Odom OW  Lee J  Herrin DL 《Plasmid》2003,49(1):75-78
Cosmid vectors containing a dominate selectable marker (ble) for complementation cloning of genes in Chlamydomonas reinhardtii were created. The usefulness of these vectors, which differ in the orientation of the ble cassette, was demonstrated by transforming C. reinhardtii to phleomycin resistance, by constructing a large library (approximately 5 x 10(5) recombinants) in one of them using DNA from a C. reinhardtii mutant, and by transforming C. reinhardtii with recombinant cosmid clones and pools.  相似文献   

13.
Kalanon M  McFadden GI 《Genetics》2008,179(1):95-112
The recently completed genome of Chlamydomonas reinhardtii was surveyed for components of the chloroplast protein translocation complexes. Putative components were identified using reciprocal BlastP searches with the protein sequences of Arabidopsis thaliana as queries. As a comparison, we also surveyed the new genomes of the bryophyte Physcomitrella patens, two prasinophyte green algae (Ostreococcus lucimarinus and Ostreococcus tauri), the red alga Cyanidioschizon merolae, and several cyanobacteria. Overall, we found that the components of the import pathway are remarkably well conserved, particularly among the Viridiplantae lineages. Specifically, C. reinhardtii contained almost all the components found in A. thaliana, with two exceptions. Missing from C. reinhardtii are the C-terminal ferredoxin-NADPH-reductase (FNR) binding domain of Tic62 and a full-length, TPR-bearing Toc64. Further, the N-terminal domain of C. reinhardtii Toc34 is highly acidic, whereas the analogous region in C. reinhardtii Toc159 is not. This reversal of the vascular plant model may explain the similarity of C. reinhardtii chloroplast transit peptides to mitochondrial-targeting peptides. Other findings from our genome survey include the absence of Tic22 in both Ostreococcus genomes; the presence of only one Toc75 homolog in C. merolae; and, finally, a distinctive propensity for gene duplication in P. patens.  相似文献   

14.
The unicellular green alga Chlamydomonas reinhardtii is a widely used model organism for studies of oxygenic photosynthesis in eukaryotes. Here we describe the development of a resource for functional genomics of photosynthesis using insertional mutagenesis of the Chlamydomonas nuclear genome. Chlamydomonas cells were transformed with either of two plasmids conferring zeocin resistance, and insertional mutants were selected in the dark on acetate-containing medium to recover light-sensitive and nonphotosynthetic mutants. The population of insertional mutants was subjected to a battery of primary and secondary phenotypic screens to identify photosynthesis-related mutants that were pigment deficient, light sensitive, nonphotosynthetic, or hypersensitive to reactive oxygen species. Approximately 9% of the insertional mutants exhibited 1 or more of these phenotypes. Molecular analysis showed that each mutant line contains an average of 1.4 insertions, and genetic analysis indicated that approximately 50% of the mutations are tagged by the transforming DNA. Flanking DNA was isolated from the mutants, and sequence data for the insertion sites in 50 mutants are presented and discussed.  相似文献   

15.
We have characterized the subunit composition of the chloroplast ATP synthase from Chlamydomonas reinhardtii by means of a comparison of the polypeptide deficiencies in a mutant defective in photophosphorylation, with the polypeptide content in purified coupling factor (CF)1 and CF1.CF0 complexes. We could distinguish nine subunits in the enzyme, four of which were CF0 subunits. Further characterization of these subunits was undertaken by immunoblotting experiments, [14C]dicyclohexylcarbodiimide binding and analysis of their site of translation. In particular, we were able to show the presence of an as yet unidentified delta subunit in CF1 from C. reinhardtii. We have identified a 70-kDa peripheral membrane protein in the thylakoid membranes of C. reinhardtii, which is immunologically related to the beta subunit of CF1. We discuss its conceivable ATPase function with respect to the Ca2+-dependent ATPase activity previously reported in the thylakoid membranes from C. reinhardtii.  相似文献   

16.
Photosynthetic pigments bind to their specific proteins to form pigment-protein complexes. To investigate the pigment-binding activities of the proteins, chlorophyll b was for introduced the first time to a cyanobacterium that did not synthesize that pigment, and expression of its function in the native pigment-protein complex of cyanobacterium was confirmed by energy transfer. Arabidopsis CAO (chlorophyll a oxygenase) cDNA was introduced into the genome of Synechocystis sp. PCC6803. The transformant cells accumulated chlorophyll b, with the chlorophyll b content being in the range of 1.4 to 10.6% of the total chlorophyll depending on the growth phase. Polyacrylamide gel electrophoresis analysis of the chlorophyll-protein complexes of transformant cells showed that chlorophyll b was incorporated preferentially into the P700-chlorophyll a-protein complex (CP1). Furthermore, chlorophyll b in CP1 transferred light energy to chlorophyll a, indicating a functional transformation. We also found that CP1 of Chlamydomonas reinhardtii, believed to be a chlorophyll a protein, bound chlorophyll b with a chlorophyll b content of approximately 4.4%. On the basis of these results, the evolution of pigment systems in an early stage of cyanobacterial development is discussed in this paper.  相似文献   

17.
18.
19.
Most higher plants and microalgae are not able to synthesize ketocarotenoids. In this study the unicellular chlorophyte Chlamydomonas reinhardtii has been genetically engineered with the beta-carotene ketolase cDNA from Haematococcus pluvialis, bkt1 (GeneBank accession no. X86782), involved in the synthesis of astaxanthin, to obtain a transgenic microalga able to synthesize ketocarotenoids. The expression of bkt1 was driven by the Chlamydomonas constitutive promoter of the rubisco small subunit (RbcS2) and the resulting protein was directed to the chloroplast by the Chlamydomonas transit peptide sequences of Rubisco small subunit (RbcS2) or Ferredoxin (Fd). In all transformants containing the bkt1 gene fused to the RbcS2 or the Fd transit peptides a new pigment with the typical ketocarotenoid spectrum was detected. Surprisingly this ketocarotenoid was not astaxanthin nor canthaxanthin. The ketocarotenoid was identified on the basis of its mass spectrum as 3,3'-dihydroxy-beta,varepsilon-carotene-4-one (4-keto-lutein) or its isomer ketozeaxanthin.  相似文献   

20.
把莱茵衣藻(Chlamydomonas reinhardtii)叶绿体作为生物反应器来表达外源基因具有广阔的应用前景。人们利用莱茵衣藻叶绿体表达体系已成功表达多种重组蛋白,其中包括人类药用蛋白。综述了莱茵衣藻叶绿体转化的方法、影响外源基因表达的主要因素以及外源基因在莱茵衣藻叶绿体表达研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号