首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
d-Hydantoinase was covalently immobilized onto polystyrene anion exchange resin via glutaraldehyde. Immobilization conditions were optimized: the carrier as D-92 type polystyrene anion exchange resin, temperature as 25 °C, immobilization time as 12 h, and initial concentration of protein as 6 mg/ml. Under the optimized reaction conditions the activity of the free and immobilized d-hydantoinase was determined. The free and immobilized d-hydantoinase samples were characterized with their kinetic parameters, thermal, and storage stability. The Km and Vmax values were 14.985 mM and 0.6 mM/min for the free, and 27.030 mM and 1.187 mM/min for the immobilized, respectively. Operational stability of the immobilized d-hydantoinase was also detected in a circulating packed-bed reactor. The half-time of the immobilized d-hydantoinase was 11 days. Nearly 90% of activity of the immobilized d-hydantoinase was reserved for 100 days stored at 4 °C. The free and immobilized d-hydantoinases were also characterized under microwave irradiation. Results shown that the reactions catalyzed by both free and immobilized d-hydantoinase were accelerated under microwave irradiation. The half-time of the immobilized d-hydantoinase reduced to 16 min under microwave irradiation.  相似文献   

2.
Alginate–chitosan polyelectrolyte complexes (PECs) have been used for the first time as a suitable matrix for coimmobilisation of enzymes to reproduce a multistep enzymatic route for production of d-amino acids. Encapsulation of a crude cell extract from Agrobacterium radiobacter containing d-hydantoinase and d-carbamoylase activities into the PECs with negligible leakage from the formed capsules was accomplished. All results in this study indicate that the preparation of the biocatalyst (preparation method and chitosan characteristics) play a key role in the biocatalyst's properties. The most suitable biocatalysts were prepared using a chitosan with a medium molecular weight (600 kDa) and a degree of deacetylation of 0.9. For all of the preparation conditions under study, an encapsulation yield of around 60% was achieved and the enzymatic activity yields ranged from 30 to 80% for d-hydantoinase activity and from 40 to 128% for d-carbamoylase activity relative to the activities of the soluble extract. All of the biocatalysts were able to hydrolyze l,d-hydroxyphenylhydantoin into p-hydroxyphenylglycine with yields ranging from 30 to 80%.  相似文献   

3.
d-Hydantoinase and d-carbamoylase genes from Agrobacterium radiobacter TH572 were cloned by polymerase chain reaction (PCR). The plasmid pUCCH3 with a polycistronic structure that is controlled by the native hydantoinase promoter was constructed to co-express the two genes and transformed into Escherichia coli strain JM105. To obtain the highest level of expression of the d-carbamoylase and avoid intermediate accumulation, the d-carbamoylase gene was cloned closer to the promoter and the RBS region in the upstream of it was optimized. This resulted in high active expression of soluble d-hydantoinase and d-carbamoylase that is obtained without any inducer. Thus, by the constitutive recombinant JM105/pUCCH3, d-p-hydroxyphenylglycine (d-HPG) was obtained directly with 95.2% production yield and 96.3% conversion yield.  相似文献   

4.
The immobilization of a multi-enzyme extract is an excellent method for multi-step biotransformations. This paper describes how a multi-enzyme extract from Agrobacterium radiobacter, rich in d-hydantoinase and N-carbamyl-d-amino acid amidohydrolase was immobilized on chitin for its application on the synthesis of p-hydroxyphenylglycine. The adsorption derivative showed a higher activity than the covalent one. Compared to the soluble multi-enzymatic extract, the adsorption derivative showed greater pH-stability in the pH range under study. Its optimum pH ranged from 7–8. Furthermore, it showed high activity at low temperature.  相似文献   

5.
A water-soluble polysaccharide isolated from Dalbergia sissoo Roxb. leaves was purified and major homogeneous fraction obtained by GPC. Complete hydrolysis of the polysaccharide followed by paper chromatography and GLC analysis indicated the presence of l-rhamnose, d-glucuronic acid, d-galactose and d-glucose in molar ratio of 1:1:2:2.33, respectively. Partial hydrolysis of the polysaccharide furnished one tri-[I], one hepta-[II] and one nona-[III] saccharides. Hydrolysis of the oligosaccharide I, II and III followed by GLC analysis furnished d-glucose and l-rhamnose (2:1); l-rhamnose, d-galactose and d-glucuronic acid (1:3:3); and l-rhamnose, d-galactose and d-glucose (1:3:5), respectively. Methylation analysis and periodate oxidation of the oligosaccharide I indicated the presence of two non reducing glucose units linked to rhamnose by 1→2 and 1→4 linkages, respectively. Oligosaccharide II is a branched molecule with a main chain consisting of 1,3-linked β-d-galactopyranosyl (2 mol), 1,3,4 linked α-l-rhamnopyranosyl (1 mol) and 1,4,6 linked β-d-galactopyranosyl unit (1 mol) and non reducing β-d-glucuronic acid at the end along with side chains of β-d-glucouronopyranosyl units (2 mol). Oligosaccharide III is also a branched molecule with a main chain consisting of 1,3,4 linked α-l-rhamnopyranosyl (1 mol), 1,2,4 linked β-d-glucopyranosyl (1 mol), 1,3 and 1,4 linked β-d-galactopyranosyl (2 and 1 mol, respectively) having β-d-glucopyranosyl as a non reducing end.  相似文献   

6.
The effects of d-limonene concentration, enzyme loading, and pH on ethanol production from simultaneous saccharification and fermentation (SSF) of citrus peel waste by Saccharomyces cerevisiae were studied at 37 °C. Prior to SSF, citrus peel waste underwent a steam explosion process to remove more than 90% of the initial d-limonene present in the peel waste. d-Limonene is known to inhibit yeast growth and experiments were performed where d-limonene was added back to peel to determine threshold inhibition amounts. Ethanol concentrations after 24 h were reduced in fermentations with initial d-limonene concentrations greater than or equal to 0.33% (v/v) and final (24 h) d-limonene concentrations greater than or equal to 0.14% (v/v). Ethanol production was reduced when enzyme loadings were (IU or FPU/g peel dry solids) less than 25, pectinase; 0.02, cellulase; and 13, beta-glucosidase. Ethanol production was greatest when the initial pH of the peel waste was adjusted to 6.0.  相似文献   

7.
An enzymatic method for obtaining d-xylulose 5-phosphate has been developed, based on the irreversible reaction catalyzed by transketolase: hydroxypyruvate + d-glyceraldehyde-3-phosphate → d-xylulose 5-phosphate. The preparations of sodium d-xylulose 5-phosphate, obtained using this approach, were 88% pure and contained no aldehyde admixtures.  相似文献   

8.
An enzymatic method for ready access to d-sedoheptulose-7-phosphate on a preparative scale was developed, based on the irreversible transketolase-catalyzed reaction: β-hydroxypyruvate + d-ribose-5-phosphate → d-sedoheptulose-7-phosphate. d-Sedoheptulose-7-phosphate disodium salt was obtained in 81% overall yield determined using a standard curve obtained by LC/MS/MS.  相似文献   

9.
A membrane-bound pyrroloquinoline quinine (PQQ)-dependent d-sorbitol dehydrogenase (mSLDH) in Gluconobacter oxydans participates in the oxidation of d-sorbitol to l-sorbose by transferring electrons to ubiquinone which links to the respiratory chain. To elucidate the kinetic mechanism, the enzyme purified was subjected to two-substrate steady-state kinetic analysis, product and substrate inhibition studies. These kinetic data indicate that the catalytic reaction follows an ordered Bi Bi mechanism, where the substrates bind to the enzyme in a defined order (first ubiquinone followed by d-sorbitol), while products are released in sequence (first l-sorbose followed by ubiquinol). From these findings, we proposed that the native mSLDH bears two different substrate-binding sites, one for ubiquinone and the other for d-sorbitol, in addition to PQQ-binding and Mg2+-binding sites in the catalytic center.  相似文献   

10.
d-Amino acid oxidase is a FAD-dependent enzyme that catalyses the conversion of the d-enantiomer of amino acids into the corresponding α-keto acid. Substrate specificity of the enzyme from the yeast Rhodotorula gracilis was investigated towards aromatic amino acids, and particularly synthetic α-amino acids.A significant improvement of the activity (Vmax,app) and of the specificity constant (the Vmax,app/Km,app ratio) on a number of the substrates tested was obtained using a single-point mutant enzyme designed by a rational approach. With R. gracilis d-amino acid oxidase the complete resolution of d,l-homo-phenylalanine was obtained with the aim to produce the corresponding pure l-isomer and to use the corresponding α-keto acid as a precursor of the amino acid in the l-form.  相似文献   

11.
Twenty pregnane glycosides, tuberoside A1–L5, were isolated from the diethyl ether-soluble fraction of the MeOH extract from the aerial parts of Asclepias tuberosa (Asclepiadaceae). The pregnane glycosides were composed of 8,12;8,20-diepoxy-8,14-secopregnane as aglycon, and d-cymarose, d-oleandrose, d-digitoxose and/or d-glucose as the component sugars. Their structures were established using NMR spectroscopic analysis and chemical methodologies.  相似文献   

12.
Phytochemical analysis of Solanum nigrum has resulted in the isolation of two novel disaccharides. Their structures were determined as ethyl β-d-thevetopyranosyl-(1→4)-β-d-oleandropyranoside (1) and ethyl β-d-thevetopyranosyl-(1→4)-α-d-oleandropyranoside (2), respectively, by chemical and spectroscopic methods.  相似文献   

13.
A reactor consisting of filter-separated two stirred compartments was developed to carry out the conversion of suspension of solid substrate d,l-p-hydroxyphenyl-hydantoin (pHPH) into d-n-carbamoyl-p-hydroxyphenylglycine (d-CpHPG) by immobilized d-hydantoinase (IDH). The immobilized enzyme and substrate suspensions were separated by a 60?μm filter to prevent the IDH from contamination with the insoluble impurities present in the substrate. The poor mass transfer between the two compartments limited the overall enzymatic reaction. It took 180?min for this reactor to accomplish the hydrolysis of 4% (w/v) pHPH. However, it took only 45?min for the reactor without using the filter to separate the two stirred compartments. The performance of the filter-separated reactor was significantly improved by applying pressure swing to the system. The pressure swing was generated by cyclically pressurizing the substrate compartment with nitrogen that caused the solution of the two compartments to flow back and forth through the filter. The reaction time for accomplishing the 4% (w/v) pHPH hydrolysis was reduced to 90?min when the pressure swing was applied with a frequency of 20?cycles/hr. The conversion of pHPH suspension of concentration as high as 15% (w/v) was easily accomplished in this pressure swing operated reactor. The used IDH of this reactor showed the same appearance as the fresh one. On the other hand, the used IDH in conventional stirred tank reactor was fouled with insoluble impurities present in the substrate.  相似文献   

14.
A complex trisaccharide β-d-GalpNAcA-(1 → 4)-β-d-GlcpNAc-(1 → 4)-d-ManpNAc (3) was prepared in a good yield (35%) in a transglycosylation reaction catalyzed by β-N-acetylhexosaminidase from Talaromyces flavus using p-nitrophenyl 2-acetamido-2-deoxy-β-d-galacto-hexodialdo-1,5-pyranoside (1) as a donor followed by the in situ oxidation of the aldehyde functionality by NaClO2. The disaccharide β-d-GlcpNAc-(1 → 4)-d-ManpNAc (2) was used as galactosyl acceptor. A disaccharide β-d-GalpNAcA-(1 → 4)-d-GlcpNAc (4; 39%) originated as a by-product in the reaction. Oligosaccharides comprising a carboxy moiety at C-6 are shown to be very efficient ligands to natural killer cell activation receptors, particularly to human receptor CD69. Thus, oxidized trisaccharide 3 is the best-known oligosaccharidic ligand to this receptor, with IC50 = 2.5 × 10−9 M. The presented method of introducing a β-d-GalpNAcA moiety into carbohydrate structures is versatile and can be applied in the synthesis of other complex oligosaccharides.  相似文献   

15.
A polysaccharide (PS-I) isolated from the aqueous extract of the unripe (green) tomatoes (Lycopersicon esculentum) consists of d-galactose, d-methyl galacturonate, d-arabinose, l-arabinose, and l-rhamnose. Structural investigation of the polysaccharide was carried out using total acid hydrolysis, methylation analysis, periodate oxidation study, and NMR studies (1H, 13C, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC). On the basis of above-mentioned experiments the structure of the repeating unit of the polysaccharide (PS-I) was established as:

  相似文献   

16.
d-Valine is an important organic chiral source and has extensive industrial application, which is used as intermediate for the synthesis of agricultural pesticides, semi-synthetic veterinary antibiotics and pharmaceutical drugs. Its derivatives have shown great activity in clinical use, such as penicillamine for the treatment of immune-deficiency diseases, and actinomycin D for antitumor therapy. Fluvalinate, a pyrethroid pesticide made from d-valine, is a broad-spectrum insecticide with low mammalian toxicity. Valnemulin, a semi-synthetic pleuromutilin derivative synthesized from d-valine, is an antibiotic for animals. Moreover, d-valine is also used in cell culture for selectively inhibiting fibroblasts proliferation. Due to its widespread application, d-valine is gaining more and more attention and some approaches for d-valine preparation have been investigated. In comparison with other approaches, microbial preparation of d-valine is more competitive and promising because of its high stereo selectivity, mild reaction conditions and environmental friendly process. So far, microbial preparation of d-valine can be mainly classified into three categories: microbial asymmetric degradation of dl-valine, microbial stereoselective hydrolysis of N-acyl-dl-valine by d-aminoacylase, and microbial specific hydrolysis of dl-5-isopropylhydantoin by d-hydantoinase coupled with d-carbamoylase. In this paper, the industrial application of d-valine and its microbial preparation are reviewed.  相似文献   

17.
The kinetically controlled synthesis of N-benzyloxycarbonyl (Z)-dipeptides was investigated by the use of free amino acids as nucleophiles and a cysteine protease papain as catalyst. The coupling efficiency was significantly improved by the combined use of the carbamoylmethyl (Cam) ester of a Z-amino acid as acyl donor and frozen aqueous solution (ice, −16 or −24 °C) as reaction medium. The yield of peptide synthesis became high when both P1- and P1-positions were occupied by small non-polar amino acids (Z-Gly-Gly-OH, 76%; Z-Gly-Ala-OH, 75%; Z-Ala-Ala-OH, 72%). Similar results were observed by the use of ficin as catalyst instead of papain. Furthermore, this strategy was applied to the papain-catalyzed incorporation of a d-configured amino acid such as d-alanine into the resulting peptides. Although the coupling in aqueous solution (30 °C) afforded the desired Z-dipeptides in low yields, the freezing of reaction medium reduced significantly unfavorable hydrolysis of the acyl donors, resulting in improvement of the coupling efficiency (Z-Gly-d-Ala-OH, 80%; Z-Ala-d-Ala-OH, 45%; Z-d-Ala-Ala-OH, 22%).  相似文献   

18.
Three new nervogenic acid glycosides, 1-O-α-l-rhamnopyranosyl 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoate, 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoic acid, and bis{3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoyl} 1,2-O-β-d-glucopyranose, which we named condobulbosides A–C, were isolated from a methanol extract of the leaves of Liparis condylobulbon together with an apigenin C-glycoside, schaftoside. Their structures were established on the basis of spectral techniques, namely, UV, IR, HR-MS spectroscopy, both 1D and 2D NMR experiments, and chemical reactions.  相似文献   

19.
Although several biosynthetic intermediates in pathways to cruciferous phytoalexins and phytoanticipins are common, questions regarding the introduction of substituents at N-1 of the indole moiety remain unanswered. Toward this end, we investigated the potential incorporations of several perdeuterated d- and l-1′-methoxytryptophans, d- and l-tryptophans and other indol-3-yl derivatives into pertinent phytoalexins and phytoanticipins (indolyl glucosinolates) produced in rutabaga (Brassica napus L. ssp. rapifera) roots. In addition, we probed the potential transformations of quasi-natural compounds, these being analogues of biosynthetic intermediates that might lead to “quasi-natural” products (products similar to natural products but not produced under natural conditions). No detectable incorporations of deuterium labeled 1′-methoxytryptophans into phytoalexins or glucobrassicin were detected. l-tryptophan was incorporated in a higher percentage than d-tryptophan into both phytoalexins and phytoanticipins. However, in the case of the phytoalexin rapalexin A, both d- and l-tryptophan were incorporated to the same extent. Furthermore, the transformations of both 1′-methylindolyl-3′-acetaldoxime and 1′-methylindolyl-3′-acetothiohydroxamic acid (quasi-natural products) into 1′-methylglucobrassicin but not into phytoalexins suggested that post-aldoxime enzymes in the biosynthetic pathway of indolyl glucosinolates are not substrate-specific. Hence, it would appear that the 1-methoxy substituent of the indole moiety is introduced downstream from tryptophan and that the post-aldoxime enzymes of the glucosinolate pathway are different from the enzymes of the phytoalexin pathway. A higher substrate specificity of some enzymes of the phytoalexin pathway might explain the relatively lower structural diversity among phytoalexins than among glucosinolates.  相似文献   

20.
The gene coding for the thermostable d-hydantoinase from the thermophilic bacterium Bacillus stearothermophilus SD1 was cloned and its nucleotide sequence was completely determined. The d-hydantoinase protein showed considerable amino acid sequence homology (20–28%) with other hydantoinases and functionally related allantoinases and dihydroorotases. Strikingly the sequence of the enzyme from B. stearothermophilus SD1 exhibited greater than 89% identity with hydantoinases from thermophilic bacteria. Despite the extremely high amino acid homology among the hydantoinases from thermophiles, the C-terminal regions of the enzymes were completely different in both sequence and predicted secondary structure, implying that the C-terminal region plays an important role in determining the biochemical properties of the enzymes. Alignment of the sequence of the d-hydantoinase from B. stearothermophilus SD1 with those of other functionally related enzymes revealed four conserved regions, and five histidines and an acidic residue were found to be conserved, suggesting a close evolutionary relationship between all these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号