首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional structure of the duplex formed by the association of the unnatural oligonucleotide alpha-d(TCTAAACTC) covalently linked to an acridine derivative (m5Acr) with its natural and parallel complementary sequence beta-d(AGATTTGAG) was investigated by nuclear magnetic resonance spectroscopy and constrained molecular mechanics calculations. All the nonexchangeable and exchangeable resonances were assigned in this duplex. The structure was refined by using interproton distances determined by NOE measurements. The NOE values were converted into distances by using the complete 190 x 190 relaxation matrix. The unnatural duplex Acrm5-alpha-d(TCTAAACTC)-beta-d(AGATTTGAG) forms a parallel right-handed helix with Watson-Crick base pairing; the alpha and beta deoxyriboses adopt a 3'-exo conformation. The acridine moiety was found stacked up the C9-G9 base pair. The structure of the first seven base pairs of this duplex was found similar to that of the duplex alpha-d(TCTAAAC)-beta-d(AGATTTG), which we had already investigated [Lancelot, G., et al. (1989) Biochemistry 28, 7871-7878]. Since these structures were generated by using experimental NOE values obtained independently on macromolecules whose global correlation time was different (3.8 and 2.2 ns), we conclude that this comparison is a good test of the viability of our method to generate three-dimensional structures of oligonucleotides in solution. Starting from different initial conformations, we show that the NOE constraints allow one to reach the same final restrained conformation, taking into account implicitly the solvent effect.  相似文献   

2.
2D-NMR studies of the unnatural duplex alpha-d(TCTAAAC)-beta-d(AGATTTG).   总被引:4,自引:4,他引:0  
The unnatural oligonucleotide alpha-d(TCTAAAC) was synthesized and was found more resistant towards endonucleases than its beta-analog. 2D-NMR experiments allowed the assignment of all non-exchangeable aromatic and sugar protons except for the overlapping 5' -5" resonances, as well as the exchangeable imino protons of the parallel hybrid duplex alpha-d (TCTAAAC)-beta-d(AGATTTG). NMR studies show that the strength of the association between the alpha-strand and the beta parallel strand is equivalent to that between their anti-parallel complementary beta-analogs beta-d(CAAATCT) and beta-d(AGATTTG). NOE data provide evidence that both duplexes form stable right-helical duplexes with an anti-conformation on the glycosyl linkages and a Watson-Crick pairing. NOESY and COSY spectra allowed us to determine that alpha and beta deoxyriboses adopt a 3' -exo conformation.  相似文献   

3.
The beta-complementary hexamer, beta-d[GTACGC], to the alpha-sequence, alpha-d[CATGCG], was synthesized by the phosphotriester method. The non-exchangeable proton assignments were obtained using 1D- and 2D-NMR techniques, including NOE, COSY and NOESY. The beta-strand exists as a random coil at 21 degrees C; however, at 4 degrees C, it forms an antiparallel self-recognition duplex annealing at positions 1-4. The beta-strand was annealed to the alpha-strand, and confirmation of complete annealing was obtained by detection and assignment of the six base pair imino protons in H2O/D2O solution at 21 degrees C. 1D-NOE experiments of the alpha, beta duplex d[alpha-(CATGCG) X beta-(GTACGC)] reveal that (i) it exists in aqueous solution in a conformation that belongs to the B family, (ii) it is 70 +/- 10% right-handed, (iii) the sugar-base orientations of the beta-strand are anti, and the deoxyribose units exist predominantly in the 2'-endo-3'-exo conformation. NOE measurements of the imino proton signals in the alpha, beta duplex reveal that the duplex exhibits parallel polarity.  相似文献   

4.
Until very recently interproton distances from NOESY experiments have been derived solely from the two-spin approximation method. Unfortunately, even at short mixing times, there is a significant error in many of these distances. A complete relaxation matrix approach employing a matrix eigenvalue/eigenvector solution to the Bloch equations avoids the approximation of the two-spin method. We have calculated the structure of an extrahelical adenosine tridecamer oligodeoxyribonucleotide duplex, d(CGCAGAATTCGCG)2, by an iterative refinement approach using a hybrid relaxation matrix method combined with restrained molecular dynamics calculations. Distances from the 2D NOESY spectra have been calculated from the relaxation rate matrix which has been evaluated from a hybrid NOESY volume matrix comprising elements from the experiment and those calculated from an initial structure. The hybrid matrix derived distances have then been used in a restrained molecular dynamics procedure to obtain a new structure that better approximates the NOESY spectra. The resulting partially refined structure is then used to calculate an improved theoretical NOESY volume matrix which is once again merged with the experimental matrix until refinement is complete. Although the crystal structure of the tridecamer clearly shows the extrahelical adenosine looped out way from the duplex, the NOESY distance restrained hybrid matrix/molecular dynamics structural refinement establishes that the extrahelical adenosine stacks into the duplex.  相似文献   

5.
Proton two-dimensional nuclear Overhauser enhancement (2D NOE) spectra in the pure absorption phase were obtained at 500 MHz for [d(GGAATTCC)]2 in aqueous solution at a series of mixing times. The experimental data were analyzed by comparison with theoretical spectra calculated using the complete 70 X 70 relaxation matrix including all proton dipole-dipole interactions and spin diffusion [Keepers, J. W. & James, T. L. (1984) J. Magn. Reson. 57, 404-426]. The theoretical spectra at each mixing time were calculated using two structures: a standard B-form DNA structure and an energy-minimized structure based on the similarity of the six internal residues of the title octamer with those of the dodecamer [d(CGCGAATTCGCG)]2, for which the crystal structure has been determined. Neither the standard B-form nor the energy-minimized structure will yield theoretical 2D NOE spectra which accurately reproduce all peak intensities in the experimental spectra. However, many features of the experimental spectra can be represented by both the B-form and the energy-minimized structure. Sequence-dependent structural characteristics are manifest in the 2D NOE spectra, in particular at the purine-pyrimidine junction as noted previously in the crystal structure. On the whole, the energy-minimized structure appears to yield theoretical 2D NOE spectra which mimic many, if not all, aspects of the experimental spectra. All 2D NOE data were consistent with nanosecond correction times as implied by proton spin-lattice relaxation time measurements. But better fits of some of the 2D NOE data using small variations in an effective isotropic correlation time suggest that there may be some local variations in mobility within the octamer duplex structure in solution.  相似文献   

6.
The solution conformation of the DNA duplex d(C1G2C3A4C5L6C7A8C9G10C11).d(G12C13G14T15G16T17G18T19G20C21G22 ) containing the 2'-deoxyribonolactone lesion (L6) in the middle of the sequence has been investigated by NMR spectroscopy and restrained molecular dynamics calculations. Interproton distances have been obtained by complete relaxation matrix analysis of the NOESY cross-peak intensities. These distances, along with torsion angles for sugar rings and additional data derived from canonical A- and B-DNA, have been used for structure refinement by restrained molecular dynamics (rMD). Six rMD simulations have been carried out starting from both regular A- and B-DNA forms. The pairwise rms deviations calculated for each refined structure are <1 A, indicating convergence to essentially the same geometry. The accuracy of the rMD structures has been assessed by complete relaxation matrix back-calculation. The average sixth-root residual index (Rx = 0.052 +/- 0.003) indicated that a good fit between experimental and calculated NOESY spectra has been achieved. Detailed analysis revealed a right-handed DNA conformation for the duplex in which both the T17 nucleotide opposite the abasic site and the lactone ring are located inside the helix. No kinking is observed for this molecule, even at the abasic site step. This structure is compared to that of the oligonucleotide with the identical sequence containing the stable tetrahydrofuran abasic site analogue that we reported previously [Coppel, Y., Berthet, N., Coulombeau, C., Coulombeau, Ce., Garcia, J., and Lhomme, J. (1997) Biochemistry 36, 4817-4830].  相似文献   

7.
A complete relaxation matrix approach employing a matrix eigenvalue/eigenvector solution to the Bloch equations is used to evaluate the NMR solution structure of a tandemly positioned G.A double mismatch decamer oligodeoxyribonucleotide duplex, d(CCAAGATTGG)2. An iterative refinement method using a hybrid relaxation matrix combined with restrained molecular dynamics calculations is shown to provide structures having good agreement with the experimentally derived structures. Distances incorporated into the MD simulations have been calculated from the relaxation rate matrix evaluated from a hybrid NOESY volume matrix whose elements are obtained from the merging of experimental and calculated NOESY intensities. Starting from both A- and B-DNA and mismatch syn and anti models, it is possible to calculate structures that are in good atomic RMS agreement with each other (less than 1.6 A RMS) but differ from the reported crystal structure (greater than 3.6 A). Importantly, the hybrid matrix derived structures are in excellent agreement with the experimental solution conformation as determined by comparison of the 200-ms simulated and experimental NOESY spectra, while the crystallographic data provide spectra that are grossly different.  相似文献   

8.
Detailed investigation of the spatial structure of duplex (Phn-NH(CH2)2NH) x pd(CCAAACA).pd(TGTTTGGC) having a covalently linked N-(2-hydroxyethyl)-phenazine in aqueous solution was continued by means of one- and two-dimensional 1H-NMR spectroscopy. Distances between the protons of the oligonucleotides as well as distances between the phenazinium and the nearest nucleotide groups protons were determined from the series of one-dimensional NOE experiments. The effective correlation time tau c determined for some proton pairs shows the phenazinium fragment to have greater internal motion than the heterocyclic bases. The deoxyribose protons coupling constants show the sugars to be in 2'-endo-conformation. The restrained molecular mechanics have yielded a possible structure of duplex in the aqueous solution fitting the experimental set of interproton distances.  相似文献   

9.
H Robinson  A H Wang 《Biochemistry》1992,31(13):3524-3533
We have developed a simple and quantitative procedure (SPEDREF) for the refinement of DNA structures using experimental two-dimensional nuclear Overhauser effect (2D NOE) data. The procedure calculates the simulated 2D NOE spectrum using the full matrix relaxation method on the basis of a molecular model. The volume of all NOE peaks is measured and compared between the experimental and the calculated spectra. The difference of the experimental and simulated volumes is minimized by a conjugated gradient procedure to adjust the interproton distances in the model. An agreement factor (analogous to the crystallographic R-factor) is used to monitor the progress of the refinement. The procedure is an The agreement is considered to be complete when several parameters, including the R-factor, the energy associated with the molecule, the local conformation (as judged by the sugar pseudorotation), and the global conformation (as judged by the helical x-displacement), are refined to their respective convergence. With the B-DNA structure of d(CGATCG) as an example, we show that DNA structure may be refined to produce calculated NOE spectra that are in excellent agreement with the experimental 2D NOE spectra. This is judged to be effective by the low R-factor of approximately 15%. Moreover, we demonstrate that not only are NOE data very powerful in providing details of the local structure but, with appropriate weighting of the NOE constraints, the global structure of the DNA double helix can also be determined, even when starting with a grossly different model. The reliability and limitations of a DNA structure as determined by NMR spectroscopy are discussed.  相似文献   

10.
K Weisz  R H Shafer  W Egan  T L James 《Biochemistry》1992,31(33):7477-7487
Phase-sensitive two-dimensional nuclear Overhauser enhancement (2D NOE) and double-quantum-filtered correlated (2QF-COSY) spectra were recorded at 500 MHz for the DNA duplex d(CATTTGCATC).d(GATGCAAATG), which contains the octamer element of immunoglobulin genes. Exchangeable and nonexchangeable proton resonances including those of the H5' and H5" protons were assigned. Overall, the decamer duplex adopts a B-type DNA conformation. Scalar coupling constants for the sugar protons were determined by quantitative simulations of 2QF-COSY cross-peaks. These couplings are consistent with a two-state dynamic equilibrium between a minor N- and a major S-type conformer for all residues. The pseudorotation phase angle P of the major conformer is in the range 117-135 degrees for nonterminal pyrimidine nucleotides and 153-162 degrees for nonterminal purine nucleotides. Except for the terminal residues, the minor conformer comprises less than 25% of the population. Distance constraints obtained by a complete relaxation matrix analysis of the 2D NOE intensities with the MARDIGRAS algorithm confirm the dependence of the sugar pucker on pyrimidine and purine bases. Averaging by fast local motions has at most small effects on the NOE-derived interproton distances.  相似文献   

11.
In order to obtain insight into the repair mechanism of DNA containing thymine photo-dimer, the conformation of the duplex d(GCGTTGCG) x d(CGCAACGC) with a thymine dimer incorporated has been studied by proton NMR and the results are compared with NMR data of the parent octamer. Two-dimensional nuclear Overhauser enhancement (2D NOE) spectroscopy and two-dimensional homonuclear Hartmann-Hahn spectroscopy have been applied to assign all the non-exchangeable base protons and most of the deoxyribose protons of both duplexes. From these experiments it is clear that indeed a cis-syn cyclobutane-type thymine photodimer is formed by the irradiation of this oligonucleotide with ultraviolet light. Comparison of 2D NOE spectra and the 1H chemical shifts of the damaged and the intact DNA duplexes reveals that formation of a thymine dimer induces small distortions of the B-DNA structure, the main conformational change occurring at the site of the thymine dimer.  相似文献   

12.
The resonances of nearly all 70 of the non-exchangeable protons of the duplex [d(GGTATACC)]2 in aqueous solution are assigned by proton two-dimensional nuclear Overhauser enhancement (2D NOE) spectra obtained in pure absorption phase at 500 MHz. Experimental and theoretical 2D NOE spectra are compared at each mixing time (100, 175, 250 and 400 ms) using two B-DNA structures: a standard B-form and an energy-minimized form. The GG and CC ends of the octamer duplex are well represented by the regular B-DNA structure. But large discrepancies from these models are observed for the 'TATA' box. All 2D NOE data are consistent with nanosecond correlation times, as indicated by non-selective proton spin-lattice relaxation times, but small variations in the correlation time are observed, suggesting that there are some local differences in mobility within the octamer duplex structure in solution.  相似文献   

13.
We have used two-dimensional (1)H NMR spectroscopy at 750 MHz to determine a high-resolution solution structure of an oligonucleotide containing restricted nucleotides with a 2'-O, 4'-C-methylene bridge (LNA) hybridized to the complementary DNA strand. The LNA:DNA duplex examined contained four thymidine LNA modifications (T(L), d(C1T(L)2G3C4T(L)5T(L)6C7T(L)8G9C10):d( G11C12A13G14A15A16G17C 18A19G20). A total relaxation matrix approach was used to obtain interproton distance bounds from NOESY cross-peak intensities. These distance bounds were used as restraints in molecular dynamics (rMD) calculations. Forty final structures were generated for the duplex from A-form and B-form DNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the 40 structures of the complex was 0.6 A. The sugar puckerings are averaged values of a dynamic interchange between N- and S-type conformation except in case of the locked nucleotides that were found to be fixed in the C3'-endo conformation. Among the other nucleotides in the modified strand, the furanose ring of C7 and G9 is predominantly in the N-type conformation whereas that of G3 is in a mixed conformation. The furanose rings of the nucleotides in the unmodified complementary strand are almost exclusively in the S-type conformation. Due to these different conformations of the sugars in the two strands, there is a structural strain between the A-type modified strand and the B-type unmodified complementary strand. This strain is relaxed by decreasing the value of rise and compensating with tip, buckle, and propeller twist. The values of twist vary along the strand but for a majority of the base pairs a value even lower than that of A-DNA is observed. The average twist over the sequence is 32+/-1 degrees. On the basis of the structure, we conclude that the high stability of LNA:DNA duplexes is caused by a local change of the phosphate backbone geometry that favors a higher degree of stacking.  相似文献   

14.
R Stolarski  W Egan  T L James 《Biochemistry》1992,31(31):7027-7042
The self-complementary DNA octamer [d(GGAATUFCC)]2, containing the EcoRI recognition sequence with one of the thymines replaced by 5-fluorouracil (UF), was synthesized. Proton homonuclear two-dimensional nuclear Overhauser effect (2D NOE) and double-quantum-filtered correlation (2QF-COSY) spectra, as well as one-dimensional spectra at different temperatures, were recorded for the octamer. Consequently, all proton resonances were assigned. The thermally induced transition from the duplex to single strands has been followed, demonstrating the stability of the duplex containing 5-fluorouracil. Simulations of the 2QF-COSY cross-peaks by means of the programs SPHINX and LINSHA were compared with experimental data, establishing scalar coupling constants for the sugar ring protons and hence sugar pucker parameters. The deoxyribose rings exhibit a dynamic equilibrium of N- and S-type conformers with 75-95% populations of the latter. Two programs used for complete relaxation matrix analysis 2D NOE spectra, CORMA and MARDIGRAS, were modified to account for the influence of the fluorines on dipolar interactions in the proton system. Quantitative assessment of the 2D NOE cross-peak intensities for different mixing times, in conjunction with the program MARDIGRAS, gave a set of interproton distances for each mixing time. The largest and smallest values of each of the interproton distances were chosen as the upper and lower bounds for each distance constraint. The distance bounds define the size of a flat-well potential function term, incorporated into the AMBER force field, which was employed for restrained molecular dynamics calculations. Torsion angle constraints in the form of a flat-well potential were also constructed from the analysis of the sugar pucker data. Several restrained molecular dynamics runs of 35 ps were performed, utilizing 284 experimental distance and torsion angle constraints and two different starting structures, energy-minimized A- and B-DNA. Convergence to similar structures with a root-mean-square deviation of 1.2 A was achieved for the central hexamer of the octamer, starting from A- and B-DNA. The average structure from six different molecular dynamics runs was subjected to final restrained energy minimization. The resulting final structure was in good agreement with the structures derived from different molecular dynamics runs and showed a substantial improvement of the 2D NOE sixth-root residual index in comparison with classical and energy-minimized B-DNA. A detailed analysis of the conformation of the final structure and comparison with structures of similar sequences, obtained by different methods, were performed.  相似文献   

15.
The temperature dependence of the formation of a complex between an alpha-d(CCTTCC) hexanucleotide and its complementary beta-d(GGAAGG) sequence was studied and compared to the formation of the beta-d(CCTTCC):beta-d(GGAAGG) complex. Such alpha-beta complex is more stable than the regular beta:beta complex. The Tm value for the alpha:beta complex is 28 degrees C (delta G degrees = -7.3 kcal/mole) while Tm = 20, 1 degree C (delta G degrees = -6.3 kcal/mole) for the beta:beta complex. The stoechiometry of the alpha:beta complex corresponds to the formation of a 1:1 duplex. However, when the alpha- strand is made of alpha-purines: alpha-d(GGAAGG), the stability of the alpha:beta complex, alpha-d(GGAAGG):beta-d(CCTTCC) is found to be lower (Tm = 13.8 degrees C) than the stability of the regular beta-beta complex, leading to the conclusion that the nature of the alpha-sequence is important in terms of stability when considering the synthesis of such a sequence for using it as antisense oligonucleotide.  相似文献   

16.
Abstract

LNA (Locked Nucleic Acids) is a novel oligonucleotide analogue containing a conformationally restricted nucleotide with a 2′-0, 4′-C-methylene bridge that induces unprecedented thermal affinities when mixed with complementary single stranded DNA and RNA. We have used two-dimensional'H NMR spectroscopy obtained at 750 and 500 MHz to determine a high resolution solution structure of an LNA oligonucleotide hybridized to the complementary DNA strand. The determination of the structure was based on a complete relaxation matrix analysis of the NOESY cross peaks followed by restrained molecular dynamics calculations. Forty final structures were generated for the duplex from A-type and B-type dsDNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the forty structures of the complex was 0.32Å. The structures were analysed by use of calculated helix parameters. This showed that the values for rise and buckle in the LNA duplex is markedly different from canonical B-DNA at the modification site. A value of twist similar to A-DNA is also observed at the modification site. The overall length of the helix which is 27.3Å. The average twist over the sequence are 35.9° ± 0.3°. Consequently, the modification does not cause the helix to unwind. The bis-intercalation of the thiazole orange dye TOTO to the LNA duplex was also investigated by 1H NMR spectroscopy to sense the structural change from the unmodified oligonucleotide. We observed that the bis-intercalation of TOTO is much less favourable in the 5′-CTLAG-3′ site than in the unmodified 5′-CTLAG-3′ site. This was related to the change in the base stacking of the LNA duplex compared to the unmodified duplex.  相似文献   

17.
The following interproton distances are reported for the decapeptide tyrocidine A in solution: (a) r(phi) distances between NH(i) and H alpha (i), (b) r(psi) distances between NH (i + 1) and H alpha (i), (c) r(phi psi) distances between NH(i + 1) and NH(i), (d) NH in equilibrium NH transannular distances, (e) H alpha in equilibrium H alpha transannular distances, (f) r x 1 distances between H alpha and H beta protons, (g) NH(i) in equilibrium H beta (i) distances, (h) NH (i + 1) in equilibrium H beta (i) distances, (i) carboxamide-backbone protons and carboxamide-side chain proton distances, (j) side chain proton-side chain proton distances. The procedures for distance calculations were: NOE ratios and calibration distances, sigma ratios and calibration distances, and correlation times and sigma parameters. The cross-relaxation parameters were obtained from the product, say, of NOE 1 leads to 2 and the monoselective relaxation rate of proton 2; the NOEs were measured by NOE difference spectroscopy. The data are consistent with a type I beta-turn/ type II' beta-turn/ approximately antiparallel beta-pleated sheet conformation of tyrocidine A in solution and the NOEs, cross-relaxation parameters, and interproton distances serve as distinguishing criteria for beta-turn and beta-pleated sheet conformations. It should be borne in mind that measurement of only r phi and r psi distances for a decapeptide only defines the ( phi, psi)-space in terms of 4(10) possible conformations; the distances b-j served to reduce the degeneracy in possible (phi, psi)-space to one tyrocidine A conformation. The latter conformation is consistent with that derived from scalar coupling constants, hydrogen bonding studies, and proton-chromophore distance measurement, and closely resembles the conformation of gramicidin S.  相似文献   

18.
Two-dimensional nuclear Overhauser effect (2D NOE) spectra have been used as the experimental basis for determining the solution structure of the duplex [d(GTATATAC)]2 employing restrained molecular dynamics (rMD) simulations. The MARDIGRAS algorithm has been employed to construct a set of 233 interproton distance constraints via iterative complete relaxation matrix analysis utilizing the peak intensities from the 2D NOE spectra obtained for different mixing times and model structures. The upper and lower bounds for each of the constraints, defining size of a flat-well potential function term used in the rMD simulations, were conservatively chosen as the largest or smallest value calculated by MARDIGRAS. Three different starting models were utilized in several rMD calculations: energy-minimized A-DNA, B-DNA, and a structure containing wrinkled D-DNA in the interior. Considerable effort was made to define the appropriate force constants to be employed with the NOE terms in the AMBER force field, using as criteria the average constraints deviation, the constraints violation energy and the total energy. Of the 233 constraints, one was generated indirectly, but proved to be crucial in defining the structure: the cross-strand A5-H2 A5-H2 distance. As those two protons resonate isochronously for the self-complementary duplex, the distance cannot be determined directly. However, the general pattern of 2D NOE peak intensities, spin-lattice relaxation time (T1) values, and 31P nuclear magnetic resonance spectra lead to use of the A3-H2 A7-H2 distance for A5-H2 A5-H2 as well. Five rMD runs, with different random number seeds, were made for each of the three starting structures with the full distance constraint set. The average structure from all 15 runs and the five-structure averages from each starting structure were all quite similar. Two rMD runs for each starting structure were made with the A5-H2 A5-H2 constraint missing. The average of these six rMD runs revealed differences in structure, compared to that with the full set of constraints, primarily for the middle two base-pairs involving the missing cross-strand constraint but global deviations also were found. Conformational analysis of the resulting structures revealed that the inner four to six base-pairs differed in structure from the termini. Furthermore, an alternating structure was suggested with features alternating for the A-T and T-A steps.  相似文献   

19.
B Borah  F B Howard  H T Miles  J S Cohen 《Biochemistry》1986,25(23):7464-7470
Proton one- and two-dimensional nuclear Overhauser enhancement (1D and 2D NOE) spectroscopy has been used to demonstrate that poly(d2NH2A-d5IU) and poly(d2NH2A-d5BrU) are converted from the B to the A conformation in high salt, as found previously for poly(d2NH2A-dT) [Borah, B., Cohen, J. S., Howard, F. B., & Miles, H. T. (1985) Biochemistry 24, 7456-7462]. The 2D NOE and 1D NOE spectra exhibit strong base proton (H8,H6)-H3' cross relaxation, suggesting short interproton distances. These results are indicative of a C3'-endo sugar pucker for both purine and pyrimidine residues in an A or closely related structure. The circular dichroism and UV spectra are consistent with the interpretation of an A conformation in high salt.  相似文献   

20.
LNA (Locked Nucleic Acids) is a novel oligonucleotide analogue containing a conformationally restricted nucleotide with a 2'-O, 4'-C-methylene bridge that induces unprecedented thermal affinities when mixed with complementary single stranded DNA and RNA. We have used two-dimensional 1H NMR spectroscopy obtained at 750 and 500 MHz to determine a high resolution solution structure of an LNA oligonucleotide hybridized to the complementary DNA strand. The determination of the structure was based on a complete relaxation matrix analysis of the NOESY cross peaks followed by restrained molecular dynamics calculations. Forty final structures were generated for the duplex from A-type and B-type dsDNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the forty structures of the complex was 0.32A. The structures were analysed by use of calculated helix parameters. This showed that the values for rise and buckle in the LNA duplex is markedly different from canonical B-DNA at the modification site. A value of twist similar to A-DNA is also observed at the modification site. The overall length of the helix which is 27.3 A. The average twist over the sequence are 35.9 degrees +/- 0.3 degrees. Consequently, the modification does not cause the helix to unwind. The bis-intercalation of the thiazole orange dye TOTO to the LNA duplex was also investigated by 1H NMR spectroscopy to sense the structural change from the unmodified oligonucleotide. We observed that the bis-intercalation of TOTO is much less favourable in the 5'-CT(L)AG-3' site than in the unmodified 5'-CTAG-3' site. This was related to the change in the base stacking of the LNA duplex compared to the unmodified duplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号