首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Changes in the pattern of distribution of the nitrogen of the soil and seedling grass plants have been investigated when the grass plants were grown in pots of sandy soil, from a pasture, at pH 5.7. Net mineralization of soil nitrogen was not observed during an experimental period of one month in the absence of added nitrogenous fertilizer (Table 2). Addition of labeled nitrogen (as ammonium sulphate) to the soil at the beginning of the experimental period resulted in a negative net mineralization during this period (Table 4b). When none of the fertilizer nitrogen remained in its original form in the soil it was found that approximately 12 per cent of the labeled nitrogen had been immobilized in soil organic compounds. Clipping of the grass at this date was followed by a decrease in the amount of labeled soil organic nitrogen, indicating that mineralization was not depressed by living plants. The application of unlabeled ammonium sulphate subsequent to the utilization of the labeled nitrogen did not decrease the amount of immobilized labeled nitrogen in the soil organic matter, as would be expected if the organic nitrogen compounds of the soil had been decomposed to ammonia. This was thought to be due to the fact that decomposition of organic nitrogen compounds in permanent grassland results in the production of peptides, amino acids etc. which are utilized by microorganisms without deamination taking place. In pots with ageing grass plants, labeled organic nitrogen compounds were found to be translocated from the grass shoots to the soil (Table 7). Net mineralization of soil organic nitrogen was positive in the contents of pots containing killed root systems (Table 3b). About 8 per cent of the labeled nitrogen added to the contents of such pots, in the form of ammonium sulphate, was found to be present in soil organic nitrogen compounds approximately 4 weeks after application, while a total of about twice this amount of soil organic nitrogen was mineralized during that period. From the results obtained in this investigation, it is concluded that the constant presence of living plants is responsible for the accumulation of nitrogen in organic compounds in permanent grassland. No evidence was obtained that the decomposition of such compounds in the soil is inhibited by living plants.  相似文献   

2.
Summary An attempt has been made to imitate the grassland system by a perfusion apparatus containing a soil-column to which labeled glucose is continuously supplied. Experiments have also been performed with substrate supplied at the start of the experiment to imitate processes occurring in arable land. Deficiency of available nitrogen caused that more of the glucose carbon added to the soil was incorporated into soil organic matter than in the presence of a supplied nitrogen source. Even more glucose carbon was incorporated into soil organic matter when nitrogen deficiency was accompanied by a continous addition of the glucose. The results obtained indicate that the continuous addition of substrate together with nitrogen deficiency as it occurs in permanent pastures are responsible for the accumulation of soil organic matter in these soils.  相似文献   

3.
S. P. Trehan  A. Wild 《Plant and Soil》1993,151(2):287-294
Cattle slurry supplemented with 15N labelled ammonium sulphate was applied to unplanted soil and to soil planted with sprouted potato tubers. For comparison, there was a similar treatment with 15N labelled ammonium sulphate alone. The pots of soil were kept at 20°C and the plants were harvested after 21, 42, 70 and 98 days. Labelled and unlabelled nitrogen were measured in the plants and, after the same intervals, in the soil as mineral, organic and clay-fixed nitrogen. The recovery of labelled nitrogen in plants plus soil by the end of the experiment was 90% with ammonium sulphate alone and 77% with cattle slurry; the corresponding recoveries in unplanted soil were only 65% and 48%. The greater recoveries of the labelled nitrogen in the planted soil are attributed to its greater protection against gaseous loss when within the plants. Another effect of the plants was to decrease the amount of labelled nitrogen that had been initially fixed by the clay. During the first 21 days with cattle slurry almost half of the labelled nitrogen became immobilized in organic matter. In the same period there was mineralization of unlabelled nitrogen, but the overall reaction was net immobilization. In later periods, immobilized labelled nitrogen in the unplanted soil decreased indicating remineralization. Estimates are given of the rates of gross mineralization, but the periods between sampling occasions were too long to yield reliable values. ei]Section editor: R Merckx  相似文献   

4.
重牧退化草地的植被、土壤及其耦合特征   总被引:53,自引:2,他引:51  
重牧退化的肃南高山草原和环县典型草原,群落的α多样性,Cody指数描述的β多样性,营养功能群多样性和生活型功能群多样性随牧压下降呈上洚趋势,固N功能群多样性和高山草原Bray-Curtis指数描述的β多样性呈相反变化趋势,2种草地0-40cm土壤全N,速效N,有机质含量和高山草原土壤速效P含量与牧压呈负相关,高山草原土壤全P含量与牧压呈正相关。典型草原土壤全N,速效N和速效P含量以及速效P/全P和C/N比值低于高山草原,但速效N/全N比值和全P含量高于后者,重牧草地土壤要素与群落活根生物量的垂直分布格局之间的灰色关联系数与牧压呈正相关,土壤要素与毒杂草和劣质牧草的关系密切,草地退化不仅是植被与土壤的衰退,也是2个子系统耦合关系的丧失和系统相悖的发展,可用耦合度与相悖度定量,综合分析,环县草原退化较肃南严重。  相似文献   

5.
Soils are important for ecosystem functioning and service provisioning. Soil communities and their functions, in turn, are strongly promoted by plant diversity, and such positive effects strengthen with time. However, plant diversity effects on soil organic matter have mostly been investigated in the topsoil, and there are only very few long-term studies. Thus, it remains unclear if plant diversity effects strengthen with time and to which depth these effects extend. Here, we repeatedly sampled soil to 1 m depth in a long-term grassland biodiversity experiment. We investigated how plant diversity impacted soil organic carbon and nitrogen concentrations and stocks and their stable isotopes 13C and 15N, as well as how these effects changed after 5, 10, and 14 years. We found that higher plant diversity increased carbon and nitrogen storage in the topsoil since the establishment of the experiment. Stable isotopes revealed that these increases were associated with new plant-derived inputs, resulting in less processed and less decomposed soil organic matter. In subsoils, mainly the presence of specific plant functional groups drove organic matter dynamics. For example, the presence of deep-rooting tall herbs decreased carbon concentrations, most probably through stimulating soil organic matter decomposition. Moreover, plant diversity effects on soil organic matter became stronger in topsoil over time and reached subsoil layers, while the effects of specific plant functional groups in subsoil progressively diminished over time. Our results indicate that after changing the soil system the pathways of organic matter transfer to the subsoil need time to establish. In our grassland system, organic matter storage in subsoils was driven by the redistribution of already stored soil organic matter from the topsoil to deeper soil layers, for example, via bioturbation or dissolved organic matter. Therefore, managing plant diversity may, thus, have significant implications for subsoil carbon storage and other critical ecosystem services.  相似文献   

6.
Mechanisms of plant species impacts on ecosystem nitrogen cycling   总被引:16,自引:0,他引:16  
Plant species are hypothesized to impact ecosystem nitrogen cycling in two distinctly different ways. First, differences in nitrogen use efficiency can lead to positive feedbacks on the rate of nitrogen cycling. Alternatively, plant species can also control the inputs and losses of nitrogen from ecosystems. Our current understanding of litter decomposition shows that most nitrogen present within litter is not released during decomposition but incorporated into soil organic matter. This nitrogen retention is caused by an increase in the relative nitrogen content in decomposing litter and a much lower carbon‐to‐nitrogen ratio of soil organic matter. The long time lag between plant litter formation and the actual release of nitrogen from the litter results in a bottleneck, which prevents feedbacks of plant quality differences on nitrogen cycling. Instead, rates of gross nitrogen mineralization, which are often an order of magnitude higher than net mineralization, indicate that nitrogen cycling within ecosystems is dominated by a microbial nitrogen loop. Nitrogen is released from the soil organic matter and incorporated into microbial biomass. Upon their death, the nitrogen is again incorporated into the soil organic matter. However, this microbial nitrogen loop is driven by plant‐supplied carbon and provides a strong negative feedback through nitrogen cycling on plant productivity. Evidence supporting this hypothesis is strong for temperate grassland ecosystems. For other terrestrial ecosystems, such as forests, tropical and boreal regions, the data are much more limited. Thus, current evidence does not support the view that differences in the efficiency of plant nitrogen use lead to positive feedbacks. In contrast, soil microbes are the dominant factor structuring ecosystem nitrogen cycling. Soil microbes derive nitrogen from the decomposition of soil organic matter, but this microbial activity is driven by recent plant carbon inputs. Changes in plant carbon inputs, resulting from plant species shifts, lead to a negative feedback through microbial nitrogen immobilization. In contrast, there is abundant evidence that plant species impact nitrogen inputs and losses, such as: atmospheric deposition, fire‐induced losses, nitrogen leaching, and nitrogen fixation, which is driven by carbon supply from plants to nitrogen fixers. Additionally, plants can influence the activity and composition of soil microbial communities, which has the potential to lead to differences in nitrification, denitrification and trace nitrogen gas losses. Plant species also impact herbivore behaviour and thereby have the potential to lead to animal‐facilitated movement of nitrogen between ecosystems. Thus, current evidence supports the view that plant species can have large impacts on ecosystem nitrogen cycling. However, species impacts are not caused by differences in plant quantity and quality, but by plant species impacts on nitrogen inputs and losses.  相似文献   

7.
Highly managed turfgrass systems accumulate considerable soil organic C, which supports a diverse and robust soil microbial community. Degradation of this soil organic C is mediated by a suite of soil enzymes. The relationship between these enzyme activities and the quality of soil organic C is central to understanding the dynamics of soil organic matter. We examined the activities of several soil enzymes involved in microbial C acquisition, including β-glucosidase, N-acetyl-β-glucosaminidase, cellulase, chitinase, and phenol oxidase, and characterized the chemical composition of soil organic matter using Fourier transform infrared spectroscopy (FTIR) in a turfgrass chronosequence (1–95 years old) and adjacent native pines. Non-metric multidimensional scaling analysis showed that the chemical composition of soil organic matter varied with turf age and land use (turf versus pines). Using the polysaccharide peak (1,060 cm−1) as a reference, both aliphatic (2,930 cm−1) and carboxylic (1,650 and 1,380 cm−1) compounds increased with turf age, indicating that soil organic matter became more recalcitrant. Soil enzyme activities per unit soil mass increased with turf age and were correlated to soil C content. Most soil enzyme activities in native pines were similar to those in young turf, but the cellulase activity was similar to or greater than the activity in old turfgrass systems. On a soil C basis, however, the activities of N-acetyl-β-glucosaminidase and cellulase decreased with turf age; this reduction was correlated to the relative changes in the chemical composition of soil organic matter. We observed that the chemical composition of soil organic matter was significantly correlated with the enzyme activity profile when expressed per unit microbial biomass C, but not per unit soil organic C. Our results suggest that chemical composition of soil organic matter changes with turf age and this change partially determines the relative abundance of C-degrading soil enzymes, likely through the influence on microbial community composition.  相似文献   

8.
Nitrification mediated nitrogen immobilization in soils   总被引:2,自引:0,他引:2  
Summary The influence of nitrification on the status of soil organic nitrogen is examined by applying NH 4 + -15N to the soil in the absence and the presence of a selective inhibitori.e. nitrapyrin. Parallel with nitrification, formation of organic nitrogen from the added fertilizer was followed. In the soil examined (pH 6.5, 4% organic carbon),ca. 55% of the fertilizer-N was immobilized during the 60 days incubation period, as a consequence of the nitrification process. Nitrification not only appeared to contribute to the binding of added mineral nitrogen onto soil organic matter, but also to re-immobilization of mineralised soil nitrogen.  相似文献   

9.
模拟践踏和降水对高寒草甸土壤养分和酶活性的影响   总被引:2,自引:0,他引:2  
为明晰牦牛和藏羊践踏对高寒草甸的分异影响,通过2年模拟践踏和降水双因子控制试验,研究了践踏和降水对高寒草甸土壤养分和酶活性的影响。研究结果表明,践踏处理提高了0—20 cm土层土壤速效氮和速效钾含量,降低了0—20 cm全磷、脲酶和0—10 cm速效磷、碱性磷酸酶和有机质含量,且适度践踏促进了全氮的矿化。随降水强度的增加,0—30 cm土层土壤全氮和0—20 cm全磷和脲酶活性呈单峰曲线的变化态势,在平水下达到峰值;降水显著降低了0—30 cm土层土壤速效氮、磷、钾和0—10 cm土层土壤全钾含量,对土壤有机质含量无显著影响(P0.05)。同一放牧强度下,藏羊践踏区的土壤养分和酶活性优于牦牛践踏区,但差异不显著(P0.05)。综合可得,家畜的践踏作用促进了土壤氮和钾的矿化,抑制了磷的累积且加速了表层土壤有机质的耗竭,降低了土壤脲酶和碱性磷酸酶活性;适度降水提高了土壤全氮、全磷含量及酶活性,降水过多则相反。适度的家畜践踏与降水相耦合下草地土壤的养分循环和酶活性要优于重度践踏和不践踏小区。在对草地的适度放牧利用前提下,应注重土壤含水量和放牧畜种对草地的影响。草地干旱或土壤含水量过高时,应适当减少放牧畜种中牦牛比例增加藏羊比例,以期使草地得到健康可持续发展。  相似文献   

10.
氮沉降改变了草地生态系统的氮(N)素循环过程,由此带来的生态学效应已成为当前研究的热点。以乌鲁木齐周边短期围封草地为研究对象,通过模拟氮沉降实验,分析了自由放牧地和围封草地土壤酶活性和微生物组成,结合土壤养分及化学计量特征,探讨了氮沉降对短期围封草地土壤微生物组成及酶活性的影响,为该地区放牧草地的保护、恢复及管理提供理论依据。结果表明:(1)土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量随围封年限的增加总体呈升高趋势,表明围封有利于提高土壤养分含量。与中国草地平均值相比,该草地土壤碳氮比(C/N)相对较高,碳磷比(C/P)、氮磷比(N/P)相对较低,表明该草地土壤有机质分解良好,有利于土壤碳(C)、磷(P)的释放,而土壤N素较为缺乏。(2)就不同围封年限而言,围封3年草地5-20cm层土壤真菌数量高于其它样地;围封3年草地表层土壤蔗糖酶与过氧化氢酶活性最高;围封7年草地放线菌数量最多,说明围封能够促进土壤微生物生长及酶活性的提高。(3)氮素添加对土壤真菌具有抑制作用,N5(4.6gN m-2 a-1)、N10(9.8gN m-2 a-1)处理显著增加了各样地土壤细菌数量,氮素添加对围封7年草地0-10cm层土壤放线菌无显著影响,而氮沉降显著增加了其它样地5-20cm层土壤放线菌数量,其中N5、N10处理下促进作用最明显;氮素添加对该草地土壤脲酶、蔗糖酶、过氧化氢酶均具有促进作用,N5、N10处理促进作用最明显。综合分析表明,氮沉降可直接或间接影响土壤微生物及酶活性,短期围封作为一种草地管理手段,对退化草地生态系统的修复具有一定作用,并可通过改善土壤理化性质、调节养分含量及其化学计量比来加速退化草地的恢复。  相似文献   

11.
Soil organisms can strongly affect competitive interactions and successional replacements of grassland plant species. However, introduction of whole soil communities as management strategy in grassland restoration has received little experimental testing. In a 5-year field experiment at a topsoil-removed ex-arable site ( receptor site ), we tested effects of (1) spreading hay and soil, independently or combined, and (2) transplanting intact turfs on plant and soil nematode community development. Material for the treatments was obtained from later successional, species-rich grassland ( donor site ). Spreading hay affected plant community composition, whereas spreading soil did not have additional effects. Plant species composition of transplanted turfs became less similar to that in the donor site. Moreover, most plants did not expand into the receiving plots. Soil spreading and turf transplantation did not affect soil nematode community composition. Unfavorable soil conditions (e.g., low organic matter content and seasonal fluctuations in water level) at the receptor site may have limited plant and nematode survival in the turfs and may have precluded successful establishment outside the turfs. We conclude that introduction of later successional soil organisms into a topsoil-removed soil did not facilitate the establishment of later successional plants, probably because of the "mismatch" in abiotic soil conditions between the donor and the receptor site. Further research should focus on the required conditions for establishment of soil organisms at restoration sites in order to make use of their contribution to grassland restoration. We propose that introduction of organisms from "intermediate" stages will be more effective as management strategy than introduction of organisms from "target" stages.  相似文献   

12.
以内蒙古克鲁伦河流域呼伦贝尔典型草原为对象,设置了轻度、中度和重度退化3种类型样地,研究不同程度退化草原的物种组成、地上生物量、土壤理化性状、土壤微生物数量和酶活性,以及微生物生物量的变化.结果表明: 中度退化样地的群落物种丰富度最大,轻度退化样地的地上生物量显著高于重度退化样地.退化样地的土壤水分、养分(有机质、全氮),微生物量碳、氮,以及微生物数量和酶活性显著下降,土壤容重显著增加.退化样地的土壤微生物生物量碳、氮在128~185和5.6~13.6 g·kg-1,土壤脱氢酶和脲酶活性均与土壤容重呈显著负相关,与土壤全氮、有机质、微生物数量以及微生物生物量碳、氮呈显著正相关,地上生物量与土壤细菌和真菌数量呈不同程度的正相关.  相似文献   

13.
草原土壤有机碳含量的控制因素   总被引:3,自引:0,他引:3  
基于374个高寒草原和温带草原土壤样品的测试结果,运用多元逐步回归分析模型定量评估了土壤环境因子对土壤有机碳(SOC)含量的影响.结果表明:高寒草原土壤有机碳含量(20.18 kg C/m2)高于温带草原(9.23 kg C/m2).土壤理化生物学因子对高寒草原和温带草原SOC含量(10 cm)变化的贡献分别是87.84%和75.00%.其中,土壤总氮含量和根系对高寒草原SOC含量变化的贡献均大于对温带草原SOC含量变化的相应贡献.土壤水分是温带草原SOC含量变化的主要限制性因素,其对SOC含量变化的贡献达33.27%.高寒草原土壤C/N比显著高于温带草原土壤的相应值,揭示了青藏高原高寒草原较高的SOC含量是由于较低的土壤微生物活性所导致.  相似文献   

14.
天祝高寒草地植被、土壤及土壤微生物时间动态的比较   总被引:11,自引:0,他引:11  
姚拓  王刚  张德罡  龙瑞军 《生态学报》2006,26(6):1926-1932
对天祝高寒草地21a前(1982年)、后(2003年)植被状况、土壤理化性质、土壤三大类微生物(细菌、放线菌和真菌)和各生理群微生物(硝化细菌、好气性固氮菌和好气性纤维素分解菌)及不同退化程度(围栏内、围栏外和鼠丘地)草地土壤微生物数量变化特点进行了对比研究。结果表明:(1)与1982年相比,目前该区天然草地植被总盖度、主要优良牧草种类、产草量等显著下降,草地植被退化明显;(2)草地土壤pH升高,土壤含水量、有机质、氮、磷含量均下降,草地土壤理化性质劣于1982年;(3)目前该区天然草地土壤三大类微生物数量及各生理群微生物数量变化十分明显,1982年土壤细菌、放线菌和真菌及微生物总数分别是2003年的153.6、5.5、4.1倍和151.2倍;土壤硝化细菌、好气性固氮菌和好气性纤维素分解菌数量分别是2003年的5.7、43.3倍和94.4倍;(4)轻度退化草地(围栏内)土壤各类微生物数量明显高于严重退化草地(围栏外、鼠丘地),其数量前者一般为后者的1.5—4.5倍。  相似文献   

15.
丁小慧  宫立  王东波  伍星  刘国华 《生态学报》2012,32(15):4722-4730
放牧通过畜体采食、践踏和排泄物归还影响草地群落组成、植物形态和土壤养分,植物通过改变养分利用策略适应环境变化。通过分析呼伦贝尔草原放牧和围封样地中的群落植物和土壤的碳氮磷养分及化学计量比,探讨放牧对生态系统化学计量学特征和养分循环速率的影响机制。结果如下:(1)群落尺度上,放牧和围封草地植物叶片C、N和P的含量没有显著差异;但是在种群尺度上,放牧草地植物叶片N含量显著高于围封草地;(2)放牧草地土壤全C、全N、有机C、速效P含量,低于围封草地,硝态N含量高于围封草地;土壤全P和铵态N指标没有显著差异;(3)放牧草地植物C∶N比显著低于围封草地,植物残体分解速率较快,提高了生态系统养分循环速率。  相似文献   

16.
草地生态系统中土壤氮素矿化影响因素的研究进展   总被引:36,自引:5,他引:36  
氮素是各种植物生长和发育所需的大量营养元素之一,也是牧草从土壤吸收最多的矿质元素.土壤中的氮大部分以有机态形式存在,而植物可以直接吸收利用的是无机态氮.这些有机态氮在土壤动物和微生物的作用下。由难以被植物直接吸收利用的有机态转化为可被植物直接吸收利用的无机态的过程就是土壤氮的矿化.氮素矿化受多种因子的影响,这些因子可以归结为生物因子和非生物因子.生物因子包括:土壤动物、土壤微生物和植物种类.土壤动物可以促进土壤有机质的矿化;土壤微生物种类、结构及功能与氮的分解、矿化有密切的关系;不同的植物种类对土壤氮素的矿化作用是不相同的,一般来说。有豆科植物生长的土壤比其它种类土氮素矿化的作用大.非生物因素一般可以分为环境因子和人类活动干扰.环境因子中土壤温度和含水量对土壤氮素矿化的影响是国内外众多科学家研究的方向.尽管如此,在此方面的研究还没有取得一致意见,仍然需要进行这方面的研究,而在其他诸如:不同的土壤质地与土壤类型方面,研究报道的结论也很不一致,草地生态系统中人类活动对土壤氮素矿化的影响主要包括,不同强度的放牧,割草以及施肥、火烧强度等.非生物因子对氮素矿化的影响非常直接和明显,尤其是人类活动.本文综述了近年来影响草地生态系统土壤氮素矿化有关因素的一些进展.  相似文献   

17.
1. In order to investigate the factors influencing the establishment of seedlings in permanent grassland, the influence of soil moisture and nitrogen fertilization on competition between established plants of Lolium perenne and seedlings of Phleum pratense or Trifolium pratense was studied in two experiments under greenhouse conditions using the 'split-box'-technique.
2. There was no difference in the production of plant dry matter of P. pratense or T. pratense between 30% volumetric soil water content (−0·005 MPa) and 22% (−0·04 MPa), but 15% soil moisture (−0·33 MPa) reduced plant growth. L. perenne yields were linearly reduced by reduced soil moisture content.
3. Shoot competition from L. perenne reduced the plant dry matter yield of P. pratense and T. pratense more than did root competition in these experiments. When shoot competition was present, differences between moisture contents were not detected, indicating that light was probably the limiting resource under such conditions. No significant interaction between root competition and soil moisture was observed for plant weight.
4. Root competition was not prevented even though sufficient water and nitrogen were supplied. This indicated either that some other growth factor was limiting or the plants competed for resources at the root hair level even though sufficient resources were supplied at the pot or field scale. Therefore, in the situation of direct drilling of species during grassland renovation, it may be difficult to alleviate competition by adequate provision of water and nitrogen.  相似文献   

18.
土壤质量评价是合理利用土壤资源的重要前提。通过采集青藏高原东北缘甘肃省天祝县境内林地(n=9)、草地(n=18)和耕地(n=38)土壤样品,并测定土壤容重、田间持水量和有机质等13项土壤理化性质指标,采用主成分分析和相关性分析构建最小数据集(MDS),建立土壤质量评价指标体系,对3个不同土地利用类型的土壤质量进行综合评价。结果表明: 林地的总孔隙度、毛管孔隙度、田间持水量、毛管持水量、饱和含水量、有机质、全氮和速效钾含量显著高于草地和耕地。林地土壤质量评价指标体系包括田间持水量、有机质、全氮、速效氮和速效钾,土壤质量指数(SQI)介于0.329~0.678,平均值为0.481;草地土壤质量评价指标体系包括田间持水量和速效氮,SQI介于0.302~0.703,平均值为0.469;耕地土壤质量评价指标体系包括毛管持水量、非毛管孔隙度、速效氮、速效磷和速效钾,SQI介于0.337~0.616,平均值为0.462。影响林地、草地和耕地土壤质量的最大障碍指标分别为速效钾、田间持水量和毛管持水量。基于MDS的土壤质量指数能够实现研究区不同土地利用类型土壤质量的准确评价,土壤质量整体上表现为林地>草地>耕地,评价结果对该区域土壤可持续管理具有重要参考价值。  相似文献   

19.
Summary Immobilization and mineralization of the tracer nitrogen (K15NO3) applied to the soil together with several organic matters during their decomposition was investigated in incubation experiments.After incubation for three months at 30°C, the decomposition rates of rice straw, hardwood bark, sawdust, softwood bark and peat moss were 41, 15, 7, 5, and 5%, respectively. After incubation for three months at 30°C, 100 and 80% of the fertilizer nitrogen were immobilized in the treatment with 2.0% of rice straw and sawdust carbon, respectively. These resulted in the lowered uptake of the fertilizer nitrogen by plants. In case of peat moss and barks, the amount of fertilizer nitrogen which transformed to the organic nitrogen fractions was quite small and the plant uptake of the nitrogen was hardly affected. Remineralization of the immobilized nitrogen was clearly observed after 2 months' incubation in case where rice straw carbon was added to the extent of 0.5 and 1.0%, but it was not observed in case where other organic matter carbon was added.The data showed that peat moss and barks were highly resistant to the action of microorganisms. As a results the immobilization process of the fertilizer nitrogen incubated with these organic matter was quite slow.  相似文献   

20.
谢驾阳  王朝辉  李生秀 《生态学报》2010,30(24):6781-6786
研究地表覆盖对土壤有机碳氮和生物活性的影响,对改进旱地作物栽培,提升土壤肥力和提高作物产量具有重要意义。采取5a田间定位试验的土壤进行室内培养试验,研究不同地表覆盖土壤轻质有机碳、轻质有机氮及微生物活性的变化。结果发现,经过61d培养之后,覆草、覆膜和常规土壤矿质态氮含量分别减少4.0,2.5,3.9 mg/kg,有机碳矿化累积量分别为125,100,101 mg/kg。覆草土壤微生物量碳含量及土壤代谢熵在培养过程中均高于覆膜。培养前后,覆草土壤的轻质有机碳氮均明显高于覆膜,覆膜和常规没有差异。培养结束后,覆草土壤轻质有机碳氮含量分别减少36%和47%,覆膜土壤分别减少26%和45%,常规土壤分别减少31%和44%。覆草土壤轻质有机碳氮含量的减少值明显高于覆膜和常规。覆草能增加土壤有机碳氮的易矿化组分,提高土壤有机质的生物有效性,覆膜则会降低土壤有机质的生物有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号