首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xenopus laevis Vg1 mRNA undergoes both localization and translational control during oogenesis. We previously characterized a 250-nucleotide AU-rich element, the Vg1 translation element (VTE), in the 3'-untranslated region (UTR) of this mRNA that is responsible for the translational repression. UV-cross-linking and immunoprecipitation experiments, described here, revealed that the known AU-rich element binding proteins, ElrA and ElrB, and TIA-1 and TIAR interact with the VTE. The levels of these proteins during oogenesis are most consistent with a possible role for ElrB in the translational control of Vg1 mRNA, and ElrB, in contrast to TIA-1 and TIAR, is present in large RNP complexes. Immunodepletion of TIA-1 and TIAR from Xenopus translation extract confirmed that these proteins are not involved in the translational repression. Mutagenesis of a potential ElrB binding site destroyed the ability of the VTE to bind ElrB and also abolished translational repression. Moreover, multiple copies of the consensus motif both bind ElrB and support translational control. Therefore, there is a direct correlation between ElrB binding and translational repression by the Vg1 3'-UTR. In agreement with the reporter data, injection of a monoclonal antibody against ElrB into Xenopus oocytes resulted in the production of Vg1 protein, arguing for a role for the ELAV proteins in the translational repression of Vg1 mRNA during early oogenesis.  相似文献   

2.
In Xenopus, an early and a late pathway exist for the selective localization of RNAs to the vegetal cortex during oogenesis. Previous work has suggested that distinct cellular mechanisms mediate localization during these pathways. Here, we provide several independent lines of evidence supporting the existence of common machinery for RNA localization during the early and late pathways. Data from RNA microinjection assays show that early and late pathway RNAs compete for common localization factors in vivo, and that the same short RNA sequence motifs are required for localization during both pathways. In addition, quantitative filter binding assays demonstrate that the late localization factor Vg RBP/Vera binds specifically to several early pathway RNA localization elements. Finally, confocal imaging shows that early pathway RNAs associate with a perinuclear microtubule network that connects to the mitochondrial cloud of stage I oocytes suggesting that motor driven transport plays a role during the early pathway as it does during the late pathway. Taken together, our data indicate that common machinery functions during the early and late pathways. Thus, RNA localization to the vegetal cortex may be a regulated process such that differential interactions with basal factors determine when distinct RNAs are localized during oogenesis.  相似文献   

3.
4.
Nuclear RNP complex assembly initiates cytoplasmic RNA localization   总被引:1,自引:0,他引:1  
Cytoplasmic localization of mRNAs is a widespread mechanism for generating cell polarity and can provide the basis for patterning during embryonic development. A prominent example of this is localization of maternal mRNAs in Xenopus oocytes, a process requiring recognition of essential RNA sequences by protein components of the localization machinery. However, it is not yet clear how and when such protein factors associate with localized RNAs to carry out RNA transport. To trace the RNA-protein interactions that mediate RNA localization, we analyzed RNP complexes from the nucleus and cytoplasm. We find that an early step in the localization pathway is recognition of localized RNAs by specific RNA-binding proteins in the nucleus. After transport into the cytoplasm, the RNP complex is remodeled and additional transport factors are recruited. These results suggest that cytoplasmic RNA localization initiates in the nucleus and that binding of specific RNA-binding proteins in the nucleus may act to target RNAs to their appropriate destinations in the cytoplasm.  相似文献   

5.
Vg 1 RNA becomes localized at the vegetal cortex of Xenopus oocytes in a process requiring both intact microtubules (MT) and microfilaments. This localization occurs during a narrow window of oogenesis, when a number of RNA-binding proteins associate with the RNA. xVICKZ3 (Vg1 RBP/Vera), the first Vg1 RNA-binding protein identified, helps mediate the association of Vg1 RNA with MT and is co-localized with the RNA at the vegetal cortex. Given the complexity of the Vg1 RNA ribonucleoprotein (RNP) complex, it has remained unclear how xVICKZ3 functions in Vg1 RNA localization. Here, we have taken a closer look at the process of xVICKZ3 localization in oocytes. We have made use of deletion constructs to perform a structure-function analysis of xVICKZ3. The ability of xVICKZ3-GFP constructs to vegetally localize correlates with their association to MT but not with Vg1 RNA-binding ability. We find that when the ability of xVICKZ3 to bind Vg1 RNA is inhibited by the injection of a construct that dominantly inhibits RNA binding, both the construct and Vg1 RNA still localize, apparently through their continued association with a Vg1 RNA-containing RNP complex. These results emphasize the importance of protein-protein interactions in both xVICKZ3 and Vg1 RNA localization.  相似文献   

6.
The translational activation of several maternal mRNAs in Xenopus laevis is dependent on cytoplasmic poly(A) elongation. Messages harboring the UUUUUAU-type cytoplasmic polyadenylation element (CPE) in their 3' untranslated regions (UTRs) undergo polyadenylation and translation during oocyte maturation. This CPE is bound by the protein CPEB, which is essential for polyadenylation. mRNAs that have the poly(U)12-27 embryonic-type CPE (eCPE) in their 3' UTRs undergo polyadenylation and translation during the early cleavage and blastula stages. A 36-kDa eCPE-binding protein in oocytes and embryos has been identified by UV cross-linking. We now report that this 36-kDa protein is ElrA, a member of the ELAV family of RNA-binding proteins. The proteins are identical in size, antibody directed against ElrA immunoprecipitates the 36-kDa protein, and the two proteins have the same RNA binding specificity in vitro. C12 and activin receptor mRNAs, both of which contain eCPEs, are detected in immunoprecipitated ElrA-mRNP complexes from eggs and embryos. In addition, this in vivo interaction requires the eCPE. Although a number of experiments failed to define a role for ElrA in cytoplasmic polyadenylation, the expression of a dominant negative ElrA protein in embryos results in an exogastrulation phenotype. The possible functions of ElrA in gastrulation are discussed.  相似文献   

7.
8.
Vegetally localized RNAs in Xenopus laevis oocytes are involved in the patterning of the early embryo as well as in cell fate specification. Here we report on the isolation and characterization of a novel, vegetally localized RNA in Xenopus oocytes termed Xvelo1. It encodes a protein of unknown biological function and it represents an antisense RNA for XPc1 over a length of more than 1.8 kb. Xvelo1 exhibits a localization pattern reminiscent of the late pathway RNAs Vg1 and VegT; it contains RNA localization elements (LE) which do not match with the consensus structural features as deduced from Vg1 and VegT LEs. Nevertheless, the protein binding pattern as observed for Xvelo1-LE in UV cross-linking experiments and coimmunoprecipitation assays is largely overlapping with the one obtained for Vg1-LE. These observations suggest that the structural features recognized by the protein machinery that drives localization of maternal mRNAs along the late pathway in Xenopus oocytes must be redefined.  相似文献   

9.
The 3′ untranslated region of mRNA encoding PHAX, a phosphoprotein required for nuclear export of U-type snRNAs, contains cis-acting sequence motifs E2 and VM1 that are required for localization of RNAs to the vegetal hemisphere of Xenopus oocytes. However, we have found that PHAX mRNA is transported to the opposite, animal, hemisphere. A set of proteins that cross-link to the localization elements of vegetally localized RNAs are also cross-linked to PHAX and An1 mRNAs, demonstrating that the composition of RNP complexes that form on these localization elements is highly conserved irrespective of the final destination of the RNA. The ability of RNAs to bind this core group of proteins is correlated with localization activity. Staufen1, which binds to Vg1 and VegT mRNAs, is not associated with RNAs localized to the animal hemisphere and may determine, at least in part, the direction of RNA movement in Xenopus oocytes.  相似文献   

10.
Xenopus cold-inducible RNA-binding protein 2 (xCIRP2) is a major cytoplasmic RNA-binding protein in oocytes. In this study, we identify another RNA-binding protein ElrA, the Xenopus homolog of HuR, as an interacting protein of xCIRP2 by yeast two-hybrid screening. As ElrA stabilizes the RNA body in the in vitro mRNA stability system, we examine the role of xCIRP2 in the stabilization of mRNA and find that xCIRP2 inhibits deadenylation of AU-rich element-containing mRNA. These results suggest that xCIRP2 and ElrA may be involved in the regulation of mRNA stability at different steps. By immunoprecipitation with anti-xCIRP2 antibody, we find that xCIRP2 interacts with several mRNAs including mRNA encoding the centrosomal kinase Nek2B in oocytes. xCIRP2 also inhibits deadenylation of the mRNA substrate containing the 3'-untranslated region of Nek2B mRNA in the in vitro system. Our results suggest that xCIRP2 associates with specific mRNAs and can regulate the length of poly(A) tail in Xenopus oocytes.  相似文献   

11.
12.
13.
Proline rich RNA-binding protein (Prrp), which associates with mRNAs that employ the late pathway for localization in Xenopus oocytes, was used as bait in a yeast two-hybrid screen of an expression library. Several independent clones were recovered that correspond to a paralog of 40LoVe, a factor required for proper localization of Vg1 mRNA to the vegetal cortex. 40LoVe is present in at least three alternatively spliced isoforms; however, only one, corresponding to the variant identified in the two-hybrid screen, can be crosslinked to Vg1 mRNA. In vitro binding assays revealed that 40LoVe has high affinity for RNA, but exhibits little binding specificity on its own. Nonetheless, it was only found associated with localized mRNAs in oocytes. 40LoVe also interacts directly with VgRBP71 and VgRBP60/hnRNP I; it is the latter factor that likely determines the binding specificity of 40LoVe. Initially, 40LoVe binds to Vg1 mRNA in the nucleus and remains with the RNA in the cytoplasm. Immunohistochemical staining of oocytes shows that the protein is distributed between the nucleus and cytoplasm, consistent with nucleocytoplasmic shuttling activity. 40LoVe is excluded from the mitochondrial cloud, which is used by RNAs that localize through the early (METRO) pathway in stage I oocytes; nonetheless, it is associated with at least some early pathway RNAs during later stages of oogenesis. A phylogenetic analysis of 2×RBD hnRNP proteins combined with other experimental evidence suggests that 40LoVe is a distant homolog of Drosophila Squid.  相似文献   

14.
15.
In Pseudomonas aeruginosa the Rsm system is involved in regulation of quorum-sensing and virulence gene expression. Our recent studies revealed that the stability and abundance of the non-coding RNA RsmY, which antagonizes the translational regulator RsmA, is dependent on Hfq. Here, we show that Hfq and RsmA bind concurrently to RsmY. Enzymatic probing of RsmY RNA in the presence of RsmA and Hfq verified the proposed -GGA- motifs as RsmA binding sites and located Hfq binding sites in single-stranded regions adjacent to stem-loop structures, respectively. We conclude that distinct binding of Hfq and RsmA on RsmY RNA permits RsmY-mediated RsmA titration upon binding to and stabilization of RsmY RNA by Hfq. In addition, we provide evidence that Hfq sequesters RNase E cleavage sites on RsmY, which explains the previously observed dependence of RsmY RNA stability on Hfq.  相似文献   

16.
17.
18.
19.
20.
Xenopus oocytes store large quantities of translationally dormant mRNA in the cytoplasm as storage messenger ribonucleoprotein particles (mRNPs). The Y-box proteins, mRNP3 and FRGY2/mRNP4, are major RNA binding components of maternal storage mRNPs in oocytes. In this study, we show that the FRGY2 proteins form complexes with mRNA, which leads to mRNA stabilization and translational repression. Visualization of the FRGY2-mRNA complexes by electron microscopy reveals that FRGY2 packages mRNA into a compact RNP. Our results are consistent with a model that the Y-box proteins function in packaging of mRNAs to store them stably for a long time in the oocyte cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号